GE Healthcare

Biacore 3000

Instrument Handbook

Biacore

Contents

Introduction		
1.1 Biomolecular interaction analysis		
1.2	Safety information	10
1.3	Conformance with standards	11
Dee		
Des	scription	
2.1	Biacore 3000 processing unit	
	2.1.1 Pumps	
	2.1.2 Autosampler	
	2.1.3 CONNECTOR DIOCK	16 16
	2.1.4 Integrated µ-Fluidic Cartriage (IFC)	
	2.1.5 The surface Prep unit	20 21
	2.1.0 Serisor Chips	
	218 Temperature control	
	219 I ED status indicators	23
2.2	Biacore 3000 system control	24
2.3	Biacore 3000 Control Software	24
2.4	BIAevaluation software	
21	FE	
Inst	tallation	
3.1	Instrument placing	
3.2	Moving Bigcore 3000	
u.	3.2.1 Within the laboratory	
	3.2.2 Longer distances	
3.3	Connections	
3.4	Software installation	
3.5	Power up	
3.6	Liquid system start-up	29
One	eration	
6 1		71
4.1	Using the software	31 71
	4.1.1 General Willows Lechniques	
	4.1.2 Starting the Control Software screen regions	
	4.1.9 Enderre 5000 software server regions	
4.2	Preparing the system	
	4.2.1 Preparing solutions	
	4.2.2 Docking the sensor chip	
	4.2.3 Initiating the liquid system	
	4.2.4 Setting autosampler rack types	
	Intr 1.1 1.2 1.3 Des 2.1 2.2 2.3 2.4 Ins 3.1 3.2 3.3 3.4 3.5 3.6 Opt 4.1 4.2	Introduction 1.1 Biomolecular interaction analysis

		4.2.5	Normalizing the signal response	
		4.2.6	Setting the temperature	
	4.3	Using	application wizards	39
	4.4	Manu	al operation	39
		4.4.1	Transferring, mixing and diluting samples	
		4.4.2	Data collection rate	41
		4.4.3	Starting a manual sensorgram	42
		4.4.4	Setting the detection mode and flow path	43
		4.4.5	Setting the flow rate	
		4.4.6	Injecting sample	45
		4.4.7	Stopping an injection	48
		4.4.8	Manual injections	
		4.4.9	Washing liquid handling system components	
		4.4.10	Saving the sensorgram	
		4.4.11	Stopping a sensorgram	
		4.4.12	Emergency stop procedure	
		4.4.13	Undocking the sensor chip	
	4.5	Queu	ing manual commands	53
		4.5.1	Starting the command queue	
		4.5.2	Command queue window display	
		4.5.3	Managing the command queue	
		4.5.4	Generating methods from the command queue	
		4.5.5	Command queue window menu	
	4.6	Meth	od-controlled operation	60
		4.6.1	Creating a method	
		4.6.2	Checking and saving the method	
		4.6.3	Running a method	
		4.6.4	Tracing method operation	
		4.6.5	Stopping a method	
	4.7	Closi	ng down the system	63
		4.7.1	Biacore 3000 Processing Unit	
		4.7.2	Control Software	64
	4.8	Viewi	ng and evaluating results	64
		4.8.1	Using multiple windows	
		4.8.2	Selecting sensorgrams	
		4.8.3	Viewing curve classes	
		4.8.4	Scaling the display	
		4.8.5	Reading coordinate values	
		4.8.6 4.0.7	Setung report points	
		4.8.7	Report point and event log markers	
		4.0.0 // 0 0	Everil iOy	69 مح
		4.0.9 1 0 1 0	Frinking Sensor grams	/0/
		4.0.10		
5	Арр	licatio	on Wizards	

5.1	Using	application wizards	72
	5.1.1	Starting application wizards	72

	5.1.2 VVI2010 terripidtes	
	5.1.3 Common wizard functions	74
5.2	Getting help on wizards	77
5.3	The surface preparation wizard	78
	5.3.1 Surface preparation wizard functions	78
	5.3.2 Immobilization pH scouting	79
	5.3.3 Immobilization	82
	5.3.4 Immobilization in Surface Prep	86
	5.3.5 Regeneration scouting	89
	5.3.6 Surface performance test	
	5.3.7 Troubleshooting surface preparation	
5.4	The analyte recovery wizard	95
	5.4.1 Analyte recovery wizard functions	
	5.4.2 Using the analyte recovery wizard	
5.5	The binding analysis wizard	102
5.6	The kinetic analysis wizard	105
	5.6.1 Kinetic analysis wizard functions	105
	5.6.2 Notes on the kinetic analysis wizard	108
	5.6.3 Interpreting results from the kinetic analysis wizard	110
Cus	tomized applications	
6.1	Overview of the customized application wizard	115
	6.1.1 Defining the command sequence	116
9-2	6.1.2 Assigning values to variables	117
M	6.1.3 Assigning rack positions	119
-	6.1.4 Preparing the run	119
6.2	Constant and variable command parameters	120
6.3	Customized application commands	120
6.3 6.4	Customized application commands Using detection mode and flow path	120 122
6.3 6.4	Customized application commands Using detection mode and flow path 6.4.1 Detection mode	120 122 122
6.3 6.4	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path	120 122 122 122
6.3 6.4	Customized application commandsUsing detection mode and flow path6.4.1Detection mode6.4.2Flow path6.4.3Flow cell names	120 122 122 122 122
6.3 6.4 6.5	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords	120 122 122 122 122 123
6.3 6.4 6.5 6.6	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords Using empty mixing vials	120 122 122 122 122 123 124
6.3 6.4 6.5 6.6 6.7	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords Using empty mixing vials Using MIX	120 122 122 122 123 123 124 125
 6.3 6.4 6.5 6.6 6.7 6.8 	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords Using empty mixing vials Using MIX Using report points	120 122 122 122 123 123 124 125
 6.3 6.4 6.5 6.6 6.7 6.8 6.9 	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords Using empty mixing vials Using mIX Using report points Using conditional commands	120 122 122 122 123 124 125 125 126
6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords Using empty mixing vials Using empty mixing vials Using MIX Using report points Using conditional commands Using WAIT	120 122 122 122 123 124 125 125 126 128
6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords Using empty mixing vials Using empty mixing vials Using MIX Using report points Using conditional commands Using WAIT Customized application examples	120 122 122 122 123 124 125 125 125 126 128 128
6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords Using empty mixing vials Using mIX Using report points Using conditional commands Using WAIT Customized application examples 6.11.1 Inhibition assay	120 122 122 122 123 124 125 125 126 128 128 128
6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords Using empty mixing vials Using mIX Using report points Using conditional commands Using WAIT Customized application examples 6.11.1 Inhibition assay 6.11.2 Conditional regeneration	120 122 122 122 123 124 125 125 126 126 128 128 128 128 128
6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Customized application commands Using detection mode and flow path 6.4.1 Detection mode 6.4.2 Flow path 6.4.3 Flow cell names Using keywords Using empty mixing vials Using empty mixing vials Using MIX Using report points Using conditional commands Using WAIT Customized application examples 6.11.1 Inhibition assay 6.11.2 Conditional regeneration 6.11.3 Conditional control experiments	120 122 122 122 123 124 125 125 126 128 128 128 128 128 129 129 120

7

6

	7.1.1	At the end of the day	
	7.1.2	System cleaning	
	7.1.3	Other routines	
7.2	User	tools	133
	7.2.1	Working tools	
	7.2.2	Test tools	139
	7.2.3	Service tools	140
Tro	ubles	hooting	
8.1	Sens	orgram problems	143
	8.1.1	Signal noise	143
	8.1.2	Low data quality	144
	8.1.3	Spikes	145
	8.1.4	Drift	145
	8.1.5	Reproducible disturbances	
	8.1.6	Shifts	
	8.1.7	No response on injection	
	8.1.8	Poor reproducibility	
	8.1.9	Sample alspersion	147
	8.1.10) Other application problems	
8.2	Instr	Capacity failure	
	8.2.1	General tallure	147
	0.2.2 0.2 z	Liquid delivery	148 140
	824	Connector block and IEC	149 151
	825	Sensor chip	
	826	Temperature control	
0 Z	Softu	vare problems	152
0.5	50110	are big of the contri	
Bia	core 3	000 Control Software reference	455
9.1	Start	Ing Blacore 3000 Control Software	
	9.1.1	Starting from Windows Start menu	
	9.1.2	Starting Hom windows Explorer	155
	9.1.5	Recovering lost data	155 156
	915	Start-un routines	150
92	Scroo	an display	
5.2	921	Menu har	157 158
	922	Toolbar	150 158
	923	Sensoraram window	158
	9.2.4	Report point table	
	9.2.5	Event log window	
	9.2.6	Status window	
	9.2.7	Method editor window	
9.3	Menu	is and buttons	161
9.4	File n	nenu	163
9.5	Edit r	nenu	169

View menu	
Command menu	
Run menu	
Tools menu	
Window menu	
Help menu	
	View menu Command menu Run menu Tools menu Window menu Help menu

Appendix A System specifications

A.1	Syste	em performance	
	A.1.1	Measuring range	
A.2	Tech	nical specifications	
	A.2.1	Processing Unit	200
	A.2.2	Detection Unit	200
	A.2.3	Pump	
	A.2.4	Autosampler	
	A.2.5	Integrated µ-Fluidic Cartridge (IFC)	202
	A.2.6	Sample recovery	
A.3	Tech	nical description	
	A.3.1	Fuses	203
	A.3.2	LED display	203
	A.3.3	Detection unit	
	A.3.4	Flow cells	204
-	A.3.5	Pumps	204
12	A.3.6	Autosampler	204
	A.3.7	Thermo-racks	205
	A.3.8	IFC	
ul	A.3.9	Automatic preparation and finishing routines	206

Appendix B Application guidelines

Gene	ral considerations	
Types	of application	210
Manu	al versus automated operation	
Speci	al features of Biacore 3000	
B.4.1	Gradient surfaces	211
B.4.2	In-line reference cell	212
Exper	imental considerations	
B.5.1	Sample preparation	212
B.5.2	Ligand immobilization	213
B.5.3	Flow rate	214
B.5.4	Injection techniques	216
B.5.5	Using a reference cell	217
B.5.6	Reducing carry-over	218
B.5.7	Temperature changes	219
B.5.8	Regeneration	221
B.5.9	Washing the liquid handling system	221
	Gene Types Manu Speci B.4.1 B.4.2 Exper B.5.1 B.5.2 B.5.3 B.5.4 B.5.5 B.5.6 B.5.7 B.5.8 B.5.9	General considerations Types of application Manual versus automated operation Special features of Biacore 3000 B.4.1 Gradient surfaces B.4.2 In-line reference cell Experimental considerations B.5.1 Sample preparation B.5.2 Ligand immobilization B.5.3 Flow rate B.5.4 Injection techniques B.5.5 Using a reference cell B.5.6 Reducing carry-over B.5.7 Temperature changes B.5.8 Regeneration B.5.9 Washing the liquid handling system

Append	ix C Chemical resistance and recommended so	lutions
C.1	General chemical resistance	224
C.2	Buffer solutions	225
C.3	Regeneration solutions	227
C.4	Disinfectants	228
Append	ix D Status and event log messages	
D.1	Status window messages	229
D.2	Event log messages	230
Append	ix E Writing Biacore 3000 methods	
E.1	Basic method programming	235
	E.1.1 Language syntax	235
	E.1.2 Constants and variables	236
	E.1.3 Comments	236
E.2	Method blocks	237
E.3	Constructing methods	238
	E.3.1 The MAIN block	238
	E.3.2 The analysis program – DEFINE APROG	238
	E.3.3 Repetitive analyses – DEFINE LOOP	243
	E.3.4 Communicating with the user – DEFINE ALERT and DI	EFINE
	MESSAGE	246
	E.3.5 Additional data curves – CURVE command	248
	E.3.6 Closing down – APPEND command	248
E.4	Method techniques	249
	E.4.1 Detection mode and flow path	249
	E.4.2 Sample injection types	
	E.4.3 Variable contact time injections	
	E.4.4 Analyte recovery	
	E.4.5 The EXTRACLEAN command	
- -		255
E.5	Common errors and error nanaling	
	E.S.1 General error nandling	
	E.S.Z Syntax en ors	250
	E.S.S Incorrect parameter values	258
	E.5.5 Incorrect parameter orderina	
	E.5.6 Incorrect number of variables	
	E.5.7 Prerun error messages	
Append	ix F Method language reference	
F 1	Command summary	265
• • • •	in C. The Surface Deep with	
Append	ix G The Surface Prep unit	
G.1	Description of the Surface Prep unit	

G.2	Surface Prep unit configurations	314
	G.2.1 Surface Prep unit configuration SP_1	315
	G.2.2 Surface Prep unit configuration SP_2	315
G.3	Immobilizing ligand	317
	G.3.1 Preparing for immobilization	317
	G.3.2 Performing the immobilization	318
	G.3.3 After immobilization	319
G.4	Analyte recovery	319
G.5	Maintenance and configuration of the Surface Prep unit	320
	G.5.1 Cleaning	320
	G.5.2 Storage	320
	G.5.3 Changing the flow cell carrier	320
	G.5.4 Changing the injection block	322
G.6	Troubleshooting	323
G.7	Chemical resistance	323
Appendi	× H Supported MALDI targets	
H.1	Bruker MTP 384 well	326
	H.1.1 Placing and orientation	326
	H.1.2 Well identification	326
цэ	ABI Vouggor and 4700, 100 well	777

	11.1.2	vven identification	
H.2	ABI V	oyager and 4700, 100 well	327
	H.2.1	Placing and orientation	327
	H.2.2	Well identification	328
H.3	ABI V	oyager and 4700, 192 well	329
	H.3.1	Placing and orientation	329
	H.3.2	Well identification	330
H.4	Shimo	adzu Kratos 384 well	331
	H.4.1	Placing and orientation	331
	H.4.2	Well identification	332
H.5	Micro	mass 96 well, 24 ref well	333
	H.5.1	Placing and orientation	333
	H.5.2	Well identification	334
Index			335

1 Introduction

1.1 Biomolecular interaction analysis

Biacore[™] 3000 from GE Healthcare is a system for real-time biomolecular interaction analysis using surface plasmon resonance (SPR) technology.

This technique monitors the formation and dissociation of biomolecular complexes on a sensor surface as the interaction occurs. By covalently attaching one molecule (the ligand) to the surface, the binding of another molecule in solution (the analyte) with the ligand is followed. Measurements are made under conditions of continuous flow, where the sensor surface forms one wall of the flow cell. For the majority of applications, the surface can be regenerated and reused for an extended series of analyses.

SPR is a non-invasive optical measuring technique which measures the mass concentration of biomolecules in close proximity to the specially prepared surface. The technique does not require any labeling of the interacting components. The response is largely independent of the nature of the biomolecule, so that all steps in an interaction analysis may be followed with the same detection technique.

Biacore 3000 measures surface protein concentrations from a few pg/mm², and can monitor changes in the surface concentration on a time scale down to 0.1 s. The technology allows determination of binding specificity, kinetics and concentration with analytes ranging in size from about 150 to 10⁶ g/mole (Daltons) or more. Flow-through technology with integrated microfluidics gives reproducible sample handling and simplifies kinetic calculations.

Biacore 3000 can be used for studying the interactions of proteins, protein conjugates, nucleic acids, lipid micelles and even larger particles such as viruses and whole cells. The technology is valuable in a wide range of application areas, ranging from basic research to drug design, interaction proteomics and biomedical research (including cancer, neurobiology and infectious diseases).

Biacore 3000 can be used in regulated, GxP (Good Laboratory Practice, Good Clinical Practice, Good Manufacturing Practice) environments, by purchasing the optional Biacore 3000 GxP Package.

Some of the major uses of GE Healthcare's SPR technology are:

- Measurement of kinetic constants, both rate and equilibrium, and kinetic ranking of related molecular species.
- Detection of binding partners in screening applications.

- Analysis of multiple binding patterns, where the ability of several analytes to bind in sequence to a ligand can reveal interference and cooperativity between analytes.
- Epitope mapping studies, where interference between different molecules for binding to the same interactant is used to probe the structure of the interactant (typically used with antibody-antigen and receptor-ligand binding).
- Concentration measurements, using the biospecific surface as a selective probe to measure the concentration of a target substance in complex mixtures.
- Monitoring of enzymatic processes, e.g. proteolysis, phosphorylation, nucleic acid synthesis, ligation and cleavage.

Since the detection technique does not require any labeling of the interacting components, many of these analyses can be carried out without purifying the ligand. For example, kinetic ranking and epitope specificity studies can be performed for monoclonal antibodies in unfractionated hybridoma culture supernatant.

Operation of Biacore 3000 can be preprogrammed for analysis of up to 192 samples (2 \times 96-well microplates). Analyte that binds to the sensor surface during an analysis cycle can be recovered in a small volume (2 μ l) using dedicated software recovery functions optimized for interfacing SPR studies with for example mass spectrometry (MS). Analyte is recovered either from a sensor chip docked into the instrument, or using a chip placed in an external Surface Prep unit. Recovered analyte is deposited in a sample vial, or directly onto a target for MALDI (matrix assisted laser desorption ionization) MS analysis.

1.2 Safety information

Biacore 3000 Processing Unit contains mains voltage and handles liquids that may be hazardous. Before operating or maintaining the system, **you must read the manual and be aware of the hazards described below.** Follow the instructions provided to avoid personal injuries or damage to the equipment. Do not use the equipment in any other way than described in this manual.

WARNING! For your own safety, always wear appropriate protective clothing during operation and maintenance of Biacore 3000.

WARNING! Use required safety equipment when handling hazardous substances.

WARNING! If the instrument is contaminated with biohazards, please contact your local GE Healthcare representative for further information about decontamination procedures.

WARNING! Biacore 3000 Processing Unit contains mains voltage of up to 265 Vac. Do not open covers. Disconnect mains cord before replacing fuses.

1.3 Conformance with standards

Biacore 3000 Processing Unit meets the following safety standards and directives:

- EN 61010-1 (1993), Safety requirements for electrical equipment for measurement, control and laboratory use.
- EN 61326-1 (1997) and amendment A1, EMC requirements for Class B equipment.
- 73/23/EEC, European directive concerning low voltage devices.
- 89/336/EEC, European directive concerning electromagnetic compatibility.

1 Introduction

1.3 Conformance with standards

2 Description

Biacore 3000 consists of a processing unit with liquid handling and optical systems and a PC running Biacore 3000 Control Software. Sensor chips and other consumables are available from GE Healthcare.

Figure 2-1. Biacore 3000 system processing unit and controlling computer.

2.1 Biacore 3000 processing unit

Biacore 3000 processing unit houses the following components:

- two liquid delivery pumps, one for maintaining a constant flow of liquid over the sensor chip surface and the other for handling samples in the autosampler
- the autosampler, for preprogrammed sample handling including mixing and injection to the detector unit as well as sample recovery
- the Integrated μ-Fluidic Cartridge (IFC), containing liquid delivery channels, sample loop and valves
- the detector unit, including optical and electronic components for creating and measuring SPR response
- 4 detector flow cells formed by the IFC pressing against the sensor chip
- microprocessors for controlling pumps, autosampler and IFC valves, and for basic processing of the SPR signal.

The removable sensor chip is inserted into the cassette port on the detector unit, and docks into the instrument to form one side of the detector flow cell. The IFC is connected to the buffer supply through the connector block, which has an injection port for loading samples into the IFC.

2 Description

2.1 Biacore 3000 processing unit

Figure 2-2. The liquid delivery system with two pumps and an autosampler transports liquid to the connector block where samples and buffers are injected to the IFC.

The door to the autosampler and buffer compartment is locked during instrument operation, to protect the operator from injury by the moving needle of the autosampler. The instrument cannot be operated with the door open.

2.1.1 Pumps

Two identical pumps are used for liquid handling in Biacore 3000. One maintains a continuous flow of liquid through the detector flow cell, while the other is used for transferring, diluting and mixing samples in the autosampler and for injecting samples into the IFC. The system switches automatically between these pumps as required. In this way, continuous flow through the flow cell is not interrupted by sample handling operations.

The pumps are syringe pumps, specially designed for accurate pulse-free flow at rates down to 1 μ l/min. Each pump has a stroke capacity of 500 μ l.

The continuous flow pump takes liquid from a buffer vessel in the bottle compartment and pumps it directly into the IFC inlet through the connector block. The autosampler pump is also primed with buffer from the buffer vessel, but is normally used for aspirating and dispensing samples in the autosampler. The autosampler pump can also be programmed to dispense buffer from the buffer vessel into autosampler vials. Samples are prevented from mixing with priming buffer by small air segments maintained in the pump tubing.

The buffer compartment can hold two 500 ml containers, one for buffer and one for collecting waste effluent from the flow cells.

2.1.2 Autosampler

The autosampler is used for transferring, diluting and mixing samples, injecting samples into the IFC, and for sample recovery. It is situated directly above the buffer compartment.

Figure 2-3. The autosampler compartment.

The autosampler rack base can accommodate two microplates or aluminum thermo-racks for samples and one reagent rack (placed between the sample racks). Samples are placed directly in microplate wells or in vials in the thermo-racks. For certain applications, a MALDI holder (see Sections 4.2.4, 5.4 and Appendix H) or Surface Prep unit (see Sections 4.2.4, 5.3.4 and Appendix G) may be placed in the left or right-hand rack positions, respectively. The stainless steel autosampler needle is mounted on a positioning arm driven by three stepper motors, which carry the needle to sample positions or to the connector block for injection of sample into the IFC. The needle is directly connected to the autosampler pump. Operation of the pump is coordinated with needle movements.

Autosampler operation is controlled from Biacore 3000 Control Software (see Chapters 4 and 9) through simple commands like **TRANSFER**, **MIX** and **INJECT**.

The temperature of the autosampler rack base can be controlled by connecting to an external thermostat pump. Aluminum thermo-racks provide the most efficient heat transfer to or from samples. The use of thermo-rack vials with septa is recommended to prevent evaporation or condensation.

Note: Always ensure that you use vials and caps that are suitable for Biacore 3000. Contact your GE Healthcare representative for up to date information regarding caps, vials and other consumables.

2.1.3 Connector block

The connector block has two inlet ports, a pump port for buffer flow with a screw-nipple fitting for the pump tubing and an injection port for the autosampler needle to inject sample and reagents. These inlets connect directly with flow channels in the IFC.

Figure 2-4. Side view of the connector block

2.1.4 Integrated µ-Fluidic Cartridge (IFC)

The IFC consists of a series of channels and pneumatic valves encased in a plastic housing, and serves to control delivery of liquid to the sensor chip surface. Samples are injected from the autosampler into the IFC, which connects directly with the detector flow cells.

There are two operation modes for sample injection with the IFC: 1) direct injection from the autosampler needle and tubing, and 2) loop injection using the sample loop in the IFC. These are illustrated schematically in Figures 2-5 and 2-6. The normal mode is direct injection, which can handle sample volumes up to 325 μ l in a single injection. The sample loop has a capacity of 100 μ l, and is loaded in the reverse direction from sample injection to minimize sample waste with smaller volumes. Loop injection is used in special circumstances, including:

- Injection of volumes larger than 325 µl, which are handled by a sequence of direct injection—loop injection—direct injection giving a maximum sample volume of 750 µl (325 µl direct + 100 µl loop + 325 µl direct).
- Injection of one sample immediately following another (co-inject) which may be used e.g. for monitoring dissociation in the presence of added effectors. For co-inject, the first sample is injected in loop mode and the second in direct mode.
- Manually controlled injections, which are always performed in loop mode.

Figure 2-5. Schematic illustration showing the flow paths during direct injection. The symbols o and I represent open and closed valves respectively. Not to scale.During preparation, the leading sample is flushed to waste to ensure minimum dispersion at the front of the injected sample plug. The continuous flow pump maintains a constant flow of buffer through the flow cell. The enlargement shows two air segments separating the sample from buffer, which prevent mixing in the autosampler tubing and IFC channels.During sample injection, the sample is driven directly through the flow cell by the autosampler pump.

Figure 2-6. Schematic illustration showing the flow paths during loop injection. The symbols o and I represent open and closed valves respectively. Not to scale.During loop loading, the continuous flow pump maintains a constant flow of buffer through the flow cell. During sample injection, buffer from the continuous flow pump pushes the sample out of the sample loop over the sensor surface in the opposite direction from loading.

The IFC allows single or multichannel analysis in up to four flow cells. Flow cells 1 and 3 can be used as on-line reference cells, allowing blank-subtracted data to be presented directly on the screen during analysis.

For kinetic measurements, it is important that the sample is delivered to the flow cell in a well-defined plug with minimum dispersion at the sample-buffer boundaries. The sample plug is created by switching between sample and buffer flow in the IFC with the help of pneumatic valves. Dispersion is minimized by the construction of the IFC, where dead volumes between valves and the flow cell are kept as small as possible. To prevent undue diffusion between sample and buffer at the beginning and end of the sample plug in the autosampler tubing, sample aspiration automatically places a number of air segments between the buffer and the sample (see Figures 2-5 and 2-6). The air segments at the beginning of the sample are flushed to waste when the injection is primed, and injection is clipped before the air segments at the end enter the flow cell. The number of seaments varies with different types of injection (e.g. one for the fastest injection, three for the most accurate).

The detector flow cells are formed directly on the IFC by docking the sensor chip on to the IFC flow cell block. This consists of four grooves, rectangular in cross section, molded into the surface of the IFC. Each groove has its own liquid delivery channel and control valve in the IFC. The block is pressed against the sensor chip, forming four separate flow cells with sensor chip surface as one wall (Figure 2-7). Effluent from the flow cells is collected in an outlet channel and directed either to waste or the recovery cup.

Integrated µ-Fluidic Cartridge with flow cell block

Figure 2-7. Precision-cast channels in the surface of the IFC define four flow cells on the sensor chip surface. These are matched by ridges of transparent polymer on the optointerface, ensuring good optical contact between the components of the system. Not to scale.

Figure 2-8. Simplified diagrammatic illustration of sample flow through three flow cells. The symbols o and I represent open and closed valves respectively. Valves and channels not used in other flow path arrangements are not included. Not to scale.

Sample injection commands activate a sequence of operations covering aspiration of sample from the autosampler vial, delivering the required amount of sample to the flow cell(s), and flushing the IFC with buffer ready for the next injection.

2.1.5 The Surface Prep unit

For most types of applications, ligands are immobilized with the sensor chip docked in the instrument, using the IFC to deliver solutions to the flow cell.

For some specialized applications, however, immobilization is performed in the Surface Prep unit, separate from the IFC. This unit is a sensor chip holder that fits directly on to the autosampler rack base in the right-hand rack position. Flow cells are formed on the sensor chip surface by docking one of two types of plastic *flow cell carrier* (FCC) block on to the chip. This is analogous to the docking procedure in the detection unit. There are two types of flow cell carrier and these are used to form either four flow cells with the same surface area as those formed in the IFC (using FCC 1 and termed *SP_1* in Biacore 3000 Control Software), or one large-area flow cell (using FCC 2 and termed configuration *SP_2* in the software). Solutions are injected directly into the flow cells with the autosampler needle, via one of two types of injection block that are specific for the FCC type used. Effluent from the flow cells is collected in a small waste beaker. Operation of the Surface Prep unit is described in detail in Appendix G.

Note: There is no SPR detection available for operations carried out in the Surface Prep unit.

The SP_1 configuration is used for applications that require high ligand concentrations, such as indirect (inhibition) assays for small molecules, where the ligand is either the analyte itself or an analyte analogue. In such cases, the ligand immobilization level may be several orders of magnitude greater than the measuring range of the assay. To eliminate the risk of carry-over of ligand from the immobilization procedure in the IFC channels, immobilization is performed in the Surface Prep unit. Compared to the IFC, the Surface Prep unit also has a higher tolerance towards some solvents (see Section G.7).

The SP_2 configuration is designed to provide a larger surface area for ligand immobilization in order to maximize binding capacity for analyte recovery operations. This is used in mass spectrometry (MS) applications in which the amount of recovered analyte may be important.

Figure 2-9. The Surface Prep unit

2.1.6 Sensor chips

Sensor Chip CM5 is a general-purpose chip coated with carboxymethylated dextran to which biomolecules can be linked with a variety of established chemical methods. Other sensor chips are also available for specific application areas. Please contact GE Healthcare for further information regarding sensor chips and immobilization chemistry if required.

Figure 2-10. Sensor Chip CM5 is a glass slide coated with a thin gold film to which the carboxymethyl dextran surface matrix is covalently bonded. The matrix surface forms one wall of the detector flow cell.

The sensor chip is mounted on a plastic support frame in a protective cassette. To dock a chip in the instrument, the cassette is inserted into the sensor chip port on the front of the processing unit, where the conveyor mechanism slides the support frame and sensor chip out of the cassette. Software-controlled docking presses the sensor chip in place between the glass prism and optointerface unit on one side and the IFC flow cell block on the other (see Figure 2-7). A green LED marked "Sensor Chip" on the front panel of the instrument indicates the status of the sensor chip (no light=no sensor chip, flashing light=not docked, steady light=docked). See Appendix G for details of how to insert a sensor chip into the Surface Prep unit.

One sensor chip can be used for repeated measurements (50-100 runs depending on the properties of the immobilized ligand and the regeneration conditions used), and can remain docked in the processing unit for up to one week. A chip can also be removed from the instrument and re-docked at a later stage (the shelf life of a used chip will depend on the nature of the immobilized ligand).

2.1.7 Optical system

The glass side of the sensor chip is pressed into contact with a glass prism in the optical unit. A silicone opto-interface between the sensor chip and the prism, matched in refractive index to the glass, ensures good optical coupling between the prism and the sensor chip.

Light from a near-infrared light-emitting diode (LED) is focused through the prism on to the sensor chip surface in a wedge-shaped beam, giving a fixed range of incident light angles. Light reflected from the sensor chip is monitored by a linear array of light-sensitive diodes covering the range of incident light angles to a resolution of approximately 10^{-5°}.

By using a wedge of incident light and a fixed array of detectors, the SPR angle is monitored accurately in real time, with no physical movement of light source, sensor chip or detector. The SPR angle is determined at a frequency of 160 Hz (measurements/s), and then averaged by the microprocessor in Biacore 3000 and transmitted to the Control Software at rates up to 10 Hz.

Figure 2-11. The detection unit houses the optical unit with light source and detector, the opto-interface and the removable sensor chip. Flow cells on the sensor chip are connected to the liquid handling system through the Integrated µ-Fluidic Cartridge (IFC). The broken line shows the boundaries of the thermally insulated box.

2.1.8 Temperature control

SPR measurements are sensitive to changes in temperature. It is important that a constant temperature is maintained at the sensor chip surface throughout the run.

The temperature control uses Peltier elements to maintain a constant preset temperature at the sensor chip surface. If the temperature is not stable, the yellow LED on the processing unit flashes and the temperature indication in the Control Software shows alternately the preset and actual temperature. The temperature control can maintain a preset temperature in the range 4-40°C as long as the operating temperature is not more than 20°C below the ambient temperature.

The temperature at the sensor chip surface is recorded automatically by the Control Software at the beginning and end of every run.

2.1.9 LED status indicators

There are five LED status indicators on the front panel of the instrument.

Ready (green)

Lights when power is on and the instrument is ready for use.

Error (red)

Lights to indicate a serious error in the instrument.

This LED is lit for a few seconds after the power is switched on. If the LED lights in other circumstances, turn off the instrument and call your GE Healthcare service representative.

Temperature (yellow)

Lights steadily when the temperature at the flow cell is stable at the preset temperature. Flashes when the temperature is not stable.

Sensor chip (green)

Lights when a sensor chip is docked and ready. Unlit when there is no sensor chip, and flashing if a sensor chip is inserted but not docked.

Run (green)

Lights when a method-controlled or manual sensorgram is running.

2.2 Biacore 3000 system control

Operation of the processing unit is controlled by an internal microcomputer, which is also responsible for recording and processing raw data from the detection unit. This internal microcomputer is in turn controlled from a separate personal computer, the system controller.

All Biacore 3000 functions, except for mechanical operations such as inserting the sensor chip cassette in the cassette port or Surface Prep unit, are controlled from Biacore 3000 Control Software running under Windows 2000 on an IBMcompatible PC. This software provides an integrated interface for Biacore 3000 operation and data collection. Information is passed between the system controller and the microcomputer in the processing unit via a standard serial communication line.

During a run, data from the detection unit are collected and processed by the internal microcomputer in the processing unit. These measurements are temporarily stored in the microcomputer's primary memory, and averaged values are passed to the system controller. In the system controller, the measurements are displayed on the screen as a sensorgram and stored permanently on the computer hard disk.

Because collection of raw data is managed by a separate micro-computer in Biacore 3000, the time resolution of measurements is not affected by computing activity on the PC running the Control Software. Simultaneous use of the PC for Biacore 3000 control and for other programs is however not recommended.

2.3 Biacore 3000 Control Software

Biacore 3000 Control Software runs under Windows 2000 or Windows XP on an IBM-compatible PC. The software includes the following functions:

- toolbar- and menu-driven interface for interactive manual control
- application wizards for guidance in standard analysis procedures
- method editor for pre-programmed operation
- direct real-time display of sensorgrams
- continuous display of sensorgram coordinates, elapsed time and response, flow rate and path, measuring temperature, and detection mode
- automatic event markers for e.g. start and end of sample injection, pump refill and extra wash
- reference line for display of elapsed time and absolute response at any point on the sensorgram

- event log which records all events in the current run
- report point table which records pre-defined sensorgram information at any requested point on the sensorgram
- notebook for experimental details
- user tools for standard operations and maintenance.

2.4 BIAevaluation software

Biacore 3000 Control Software includes an interface to the separate BIAevaluation Software for help in interpreting sensorgram data. Routines are currently supplied for:

- comparing sensorgrams from separate runs by generating overlay plots
- deriving binding rates from sensorgram data, primarily for use in concentration measurements (from analyses under conditions where the binding rate is directly proportional to the analyte concentration)
- deriving kinetic rate constants from association and dissociation phases of sensorgrams
- evaluating concentration measurements.
- The operation of BIAevaluation is described in a separate handbook.

2 Description2.4 BIAevaluation software

3 Installation

Biacore 3000 will be installed by a GE Healthcare representative.

3.1 Instrument placing

Place the instrument on a firm bench clear of strong electrical or magnetic fields. Do not place vibrating equipment (e.g. bench centrifuges) on the same bench. If possible avoid placing the instrument close to a window where direct sunlight or ventilation may cause sudden temperature changes.

For correct functioning of the temperature control system, make sure that the fan inlet (underneath the instrument at the front left-hand side) and outlet (on the back panel at the left-hand side) are not obstructed. There should be at least 20 cm clearance behind and above the instrument to allow adequate air circulation.

3.2 Moving Biacore 3000

3.2.1 Within the laboratory

If Biacore 3000 is to be moved locally within the laboratory, undock the sensor chip (Section 4.4.13) and shut down the system (Section 4.7).

Lift the instrument by the handles (one at each side). Keep the instrument upright during moving.

Caution

The instrument is heavy (50 kg) and may need two people to lift it.

3.2.2 Longer distances

Contact your GE Healthcare representative for instructions.

3.3 Connections

1 The **MAINS INLET**, the **MAINS POWER** switch and the mains fuses are located on the mains input panel on the left side of the instrument. Input voltage range, maximum power consumption and fuse ratings are printed on the mains input panel.

Connect the power cord to the mains inlet.

- 2 Install computer peripheral equipment according to the respective instruction manuals. Use a parallel port for printer connection (normally LPT1) and serial port COM1 for Biacore 3000 (right-hand side of the instrument). Serial port COM2 is for service purposes.
- **Note:** On Compaq personal computers, the **COM1** serial port is marked "**IOIOIA**". On other makes of computer, the port may be marked "**COM1**", "Serial Port 1" or similar, or not marked at all. Refer to your computer documentation if you are uncertain about the location of the serial port.
- 3 Check that the voltage selector on the PC is set correctly.

3.4 Software installation

Biacore 3000 Software is supplied on CD-ROM. The software will be installed at delivery. If the software needs to be re-installed for any reason, follow the steps below:

- 1 Turn on the PC.
- 2 Insert the CD-ROM in the CD drive and follow the instructions provided in the CD box.
- 3 For software registration, you need the Product Key, which is printed on the back of the CD box. Software cannot be installed without a valid Product Key.
- 4 After restart, Biacore 3000 Control Software and BIAevaluation appear in the BIA Programs group in the Windows Start menu.
- 5 Turn off the power save feature in the Display control panel under Settings: Control Panel. This may otherwise interfere with instrument communication during runs.

3.5 Power up

- 1 Switch on Biacore 3000. The LEDs on the front panel should light in the following sequence:
 - a) All the LEDs at the front light for a few seconds and then go out.
 - b) The green Ready LED lights.
 - c) The yellow Temperature LED flashes to indicate non-stabilized temperature, then is steadily lit when the temperature at the detection unit is stable. The time required for temperature stabilization will depend on instrument and ambient temperatures.
- 2 Start the Control Software. The instrument software is downloaded to Biacore 3000, which takes several minutes. (This downloading procedure is performed only if Biacore 3000 has been switched off.)

3.6 Liquid system start-up

- 1 Put buffer and waste reservoirs in place. Insert the inlet tubing into the buffer reservoir. HBS buffer is recommended as a general-purpose running buffer, and is supplied by GE Healthcare in disposable ready-to-use packs.
- 2 A 500-1000 ml flask or bottle is recommended as a waste reservoir.
- 3 Insert a new sensor chip. Close the instrument door and choose **Command:Dock** in the Control Software menu. Run **Working Tools:Prime** after docking (see Section 7.2.1).
 - **Note:** The instrument door will be locked during operation. This is a safety measure to prevent injury by the sharp autosampler needle.
- 4 Run *Working Tools:Rinse* to flush the liquid handling system a second time. Check that there are no leaks at tubing connectors.
- 5 Run *Test Tools:System check* to check the system performance. See Section 7.2.2 for details of this procedure.

3 Installation

3.6 Liquid system start-up

4 Operation

This chapter describes the operations involved in using Biacore 3000. The chapter is organized into the following sections:

- Using the software
- Preparing the system
- Using application wizards
- Manual operation
- Queuing manual commands
- Method-controlled operation
- Viewing and evaluating results

4.1 Using the software

4.1.1 General Windows techniques

Biacore 3000 Control Software runs under Microsoft Windows and follows the general Windows standards for handling screen windows, menus and dialog boxes.

4.1.2 Starting the Control Software

A shortcut to the Control Software is installed under **BIA Programs** on the **Start** menu.

It does not matter whether you switch on the instrument or start the software first. If you start the software first, the status window will display the message *Instrument Offline*. Connection will be established when the instrument is switched on.

-Sensorgram Time: s	Response:	RU
Flow: Temperature: Instrument Offline	Flow Cell: *C	

Depending on the current instrument status when the software is started, you will be prompted for the appropriate set-up action (e.g. dock a sensor chip, prime the system). See Section 4.2 for further details of these actions.

4.1.3 Biacore 3000 software screen regions

The Biacore 3000 software screen is divided into six main areas:

- The *menu bar* provides access to menu commands. Many of the commands can also be accessed through shortcut keys (see Section 9.3).
- Buttons on the *toolbar* duplicate frequently used menu commands for more convenient access.
- The sensorgram window displays one to four sensorgrams, dependent on the detection mode selected. This area also displays the *method editor* window.
- The *report point table* records sensorgram information at each report point.
- The *event log window* records important parameters at the start and end of each run and at events during the run.
- The *status window* displays the current instrument status, including current response, flow rate and temperature. System status messages are displayed at the bottom of this window.

See Section 9.2 for a more detailed description of the screen regions.

Menu/Command	Toolbar button	Shortcut key	
File			
Open	۲ <u>ل</u>	Ctrl-O	
Save		Ctrl-S	
Print		Ctrl-P	
Edit (sensorgram)			
Copy Graph		Ctrl-H	
Add Report Point	<u></u>		
Edit (method)			
Undo		Ctrl-Z	
Cut		Ctrl-X	
Сору		Ctrl-C	
Paste		Ctrl-V	
Find		Ctrl-F	
Replace		Ctrl-R	
View	-		
Unzoom		Ctrl-U	
Reference Line	¥	F8	
Baseline		F9	
Notebook	<u></u>		
Wizard Results		Ctrl-R	
Command			
Inject/Stop Inject	× ×		
Transfer	1		

Mix	ð		
Flow/Stop Flow	אل <mark>ہ</mark> اللہ		
Run			
Run/Stop Sensorgram	k, k		
Stop Sensorgram			
Tools			
Evaluation	III	Ctrl-E	

4.1.4 Commands and toolbar buttons

In the descriptions in this chapter, commands are referred to by name, with the menu name separated from the command name by a colon (e.g. **Command:Dock**). Many of the commonly used commands are associated with toolbar buttons. Many commands also have shortcut keys. A list of toolbar buttons and shortcut keys is given on the next page. Commands not included in this list are available only from the menu bar. Toolbar buttons are also shown in the margin where appropriate in this chapter

4.2 Preparing the system

Do not put papers under the instrument, particularly at the left-hand side. Paper is easily sucked against the fan inlet, blocking the air intake. Make sure that the space between the bottom of the instrument and the bench is not obstructed by laboratory equipment, notebooks etc.

4.2.1 Preparing solutions

HBS buffers are ready-to-use HEPES-buffered saline solutions supplied by GE Healthcare which is recommended as running buffer for most general applications. They are sterile-filtered, degassed and supplied in disposable packs (200 ml) which can be used as a buffer reservoir. HBS buffers are available with and without EDTA and surfactant.

Other solutions for use in Biacore 3000 should be degassed and filtered through a 0.22 μ m filter to remove particles. Buffer solutions should contain 0.005% Surfactant P20¹ to minimize non-specific adsorption of proteins to the autosampler tube and the IFC channels. You may omit surfactant if your sample is detergent-sensitive: however, you should then take special care to clean the IFC channels regularly (see Chapter 7).
4.2.2 Docking the sensor chip

Before Biacore 3000 can be used, a sensor chip must be docked in the instrument and the flow system primed with buffer.

To dock the sensor chip, open the sensor chip port cover, pull out the slide and insert a sensor chip cassette in the docking station with the label facing upwards and the arrow pointing into the instrument. *Do not force the cassette into the station. Do not slide the sensor chip out of the protective cassette*.

Figure 4-1. Inserting the sensor chip. 1. Place the sensor chip cassette on the slide with the label facing upwards and the arrow pointing into the instrument. 2. Push the slide into the instrument.

Push in the slide and close the sensor chip port cover, then choose *Command:Dock* in the Control Software to dock the chip.

4.2.3 Initiating the liquid system

After docking a new sensor chip, run the working tool *Prime* to prime the flow system with buffer. The working tools dialog box is automatically opened after a docking operation.

Place running buffer and a waste bottle in the buffer compartment beside the pumps. Place the buffer to the right and the waste bottle to the left. Insert the

 $^{^1\,}$ Surfactant P20 is supplied as a 10% stock solution. To prepare buffer containing 0.005% surfactant, add 50 μl stock solution to 100 ml buffer.

pump tubings (make sure these are clean!) from both pumps into the buffer carton and the waste outlet tubing into the waste bottle.

In the working tools dialog box, make sure *Prime* is selected and click on *Start*. Follow the instructions on the screen.

🖙 Working Tools	×
Close Desorb Flush Normalize Prime Rinse Sanitize Sanitize Shutdown Shutdown Shutdown	Start Cancel
Primes the liquid system by flushing pumps, IFC and au buffer. Use this procedure after docking a new chip ar is changed. Total run time is about 6 minutes and 20 seconds.	tosampler with d when the buffer
Last Run Time:	

If you do not want to prime the system immediately after docking, click on *Cancel* in the Working Tools dialog box. Note however that you should run *Prime* before using the sensor chip for ligand immobilization or interaction analysis.

4.2.4 Setting autosampler rack types

The autosampler can hold two sample racks, which may be either microplates or one of three thermo-racks, and one reagent rack (see Section A.2.4). A MALDI holder may also be placed in the left-hand rack position to accommodate a software-supported MALDI target type (see Section 5.4 and Appendix H). If the *Surface Prep unit* is used (see Section 5.3.4 and Appendix G), this must be placed in the right-hand rack position.

To place racks on the autosampler rack base, pull back the slider lock at the front of the base and place the rack on the base with the text at the front. The rack will be locked in place when you release the slider. Make sure that the rack is properly seated on the base. Incorrectly seated racks could result in air being introduced into the sample injections.

Choose **Command:Define Rack Base** to tell the control software which rack types are being used. This setting determines which rack positions are valid for commands like **Transfer**, **Mix**, **Dilute** and **Inject**.

Select appropriate rack types from the pull-down lists and click on OK.

Note: There is no automatic sensing of rack type in the software. If you set the wrong rack type, the autosampler needle may be directed to the wrong or non-existent positions. Remember to re-define the rack base using this command if you change the type of rack in the autosampler.

4.2.5 Normalizing the signal response

Variations in reflectance characteristics between different sensor chips affect the SPR signal. These are compensated by a normalization procedure, using a standard glycerol solution to create a total reflection. You should run the normalization procedure when you change the detection temperature (see Section 4.2.6) or when you dock a new sensor chip and require maximum sensitivity.

BIAnormalizing solution (70% w/w glycerol in water) is included in the BIAmaintenance Kit. Transfer 0.5 ml to a 9 mm vial and place the vial in position

R2F2, i.e. rack position 2 (right-hand rack), sample position F2 (second position from the front in row F). You should have rack type A or B in rack position 2 for this procedure. The procedure will prompt for rack base definition if any other rack type is currently defined in position 2.

Figure 4-3. The autosampler compartment viewed from the front, showing the position R2F2 used for BIAnormalizing solution. Thermo-rack type B is shown in both base positions.

Note: The glycerol concentration (70% w/w) is critical for correct normalization.

Close the door to the autosampler compartment. Select **Tools: Working Tools.** Select **Normalize** in the list and click on **Start**. Follow the instructions on the screen.

🌆 Working Tools	×
Close Desorb Flush Normalize Prime Rimse Sanitize Shutdown Standby	Start Cancel
Normalizes the signal in all flow cells. Use this procedu opto-interface is changed b) when the temperature is o a new sensor chip is docked and maximum sensitivity i Total run time is about 5 minutes.	re a) when the hanged c) when s required.
Last Run Time: 10-jun-1998 13:10	

4.2.6 Setting the temperature

Select **Command:Set Temperature** and enter the required analysis temperature.

Se Se	t Temperature		×
, ic	Set Temperature	,	ОК
	Temperature.		Cancel

The temperature display in the status window toggles between the set temperature and the actual temperature and the temperature LED on the processing unit flashes until the measured temperature is stable.

Wait until the sensor chip surface temperature is stable before starting a sensorgram. A temperature change of 5°C takes about 60 minutes.

Note: The **Set Temperature** command controls the detection temperature at the sensor chip surface. Samples and buffer equilibrate to the detection temperature during passage through the IFC, even at high flow rates (100 μ /min). You may want to maintain the samples in the autosampler compartment at a different temperature for stability reasons. Thermostatting liquid can be circulated through the rack base in the autosampler using an external pump.

4.3 Using application wizards

Application wizards help both new and experienced users to perform their analyses quickly and confidently. An application wizard is a software tool that guides you through the steps in an experiment, from start to final analysis. Procedures and recommendations in the application wizards are based on accumulated expertise from analyses with Biacore systems. Detailed on-line help can be accessed from the dialog boxes in the wizards.

Application wizards provided with Biacore 3000 are described in Chapter 5.

4.4 Manual operation

This section describes how to operate Biacore 3000 manually through the software interface. See Section 4.6 for a description of method-controlled operation.

Note: The instrument door is locked for safety reasons during operations which use the autosampler (e.g. sample mixing and injection). Make sure all samples and vials are in place before initiating such operations. These operations cannot be performed if the door is not closed.

4.4.1 Transferring, mixing and diluting samples

Samples can be transferred between vials, mixed and diluted using the autosampler. These operations can be performed without starting a sensorgram.

Note: If you perform sample transfer operations while a sensorgram is running, the operations will be recorded in the event log for the sensorgram. This can provide valuable documentation of sample operations for analyses where e.g. the time of sample preparation is critical.

The dialog boxes for these operations include fields for vial positions in the autosampler racks. The pull-down list associated with each position entry includes all valid rack positions for the currently installed racks (see Section 4.2.4), as well as positions such as **BUFFER** (running buffer) and **WASTE**.

There is also a **Predip Needle** option, allowing you to select a position at which the needle will be dipped before the transfer operation. This operation also aspirates 10 µl from the predip position into the autosampler tubing to prevent the sample from coming into contact with running buffer. Use this feature to minimize carry-over between sample vials, e.g. when solutions of widely different composition are used in succession, and also when it is important that the sample in the vial does not become contaminated with running buffer.

Transferring samples

To transfer sample from one rack position to another, select Command:Transfer.

🗖 Tr	ansfer			×
हि	Transfer			Οκ
	Erom Position:	B1A1	•	
	<u>T</u> o Position:	R1A2	T	Cancel
	⊻olume:	35	μ	
	☐ Predip <u>N</u> eedle			
	<u>P</u> osition	c 🔤	7	

Enter the required rack positions and volume, then click on **OK**.

Mixing samples

To mix sample in one position, select **Command:Mix.** Use this command for example after transferring two different solutions to a common vial to prepare a homogeneous mixture.

M	ix			×
3	Mix	Date: 0	_	OK
	Position:	R1A2		Cancel
	Volume:	1150	μ	
	Predip I			
	P <u>o</u> siti	on:	Y	

Enter the required rack position and appropriate volume to be mixed (maximum 450 µl), then click on **OK**. As a general guideline, mix using 75% of the total volume in the vial. The mixing procedure aspirates the specified volume of sample and then dispenses it to the same vial. This is performed three times.

Diluting samples

To dilute a sample, select **Command:Dilute.** This command can also be used instead of two successive **Transfer** operations to prepare a mixture of two samples.

📑 Di	lute			×
88	Dilute			Οκ
	Sample <u>1</u> Position:	R2A1	•	
	Sample <u>2</u> Position:	R2A2	•	Cancel
	<u>M</u> ix Position:	R2A3	•	
	Total Volume:	200	μΙ	
	Dilute Sample 1 to:	35	%	
	☐ Predip <u>N</u> eedle			
	<u>P</u> osition	c 📃	$\overline{\nabla}$	
				J

This command prepares a dilution of sample 1 in sample 2 at the specified mixing position. The final volume of the diluted sample is always 200 μ l (for example, requesting a dilution to 20% will take 40 μ l sample 1 and 160 μ l sample 2). The dilution value must be in the range 5-95%. For best precision, use values in the range 10-90%.

One *Dilute* command performs the equivalent of two *Transfer* commands followed by a *Mix*. For example,

Dilute sample 1 R1A1,	is equivalent to	1. Transfer 40 µl from R1A1 to R1A3.
sample 2 R1A2, mix position R1A3, dilution 20%.		2. Transfer 160 µl from R1A2 to R1A3.
		3. Mix in R1A3.

Note: Dilute is optimized for best performance and should be used where possible in preference to **Transfer** and **Mix**. For best repeatability between dilution operations, always specify the solutions in the same order in the dialog box.

4.4.2 Data collection rate

The data collection rate determines the number of points collected per unit time during the sensorgram (i.e. the time resolution of the analysis) for method and manual runs. Data collection rate can be set to *Low, Medium* or *High* with the *Run:Data Collection Rate* command. Actual collection rates for various settings are listed in the table below.

	Number of flow cells			
Data collection rate	1 2 4			
Low	0.1 point/s	0.1 point/s	0.1 point/s	
Medium	1.0 point/s	1.0 point/s	1.0 point/s	
High	10.0 points/s	5.0 points/s	2.0 points/s	

Note: Values in multichannel mode refer to the collection rate per channel.

The default setting of *Medium* is adequate for most purposes. Set the rate to *High* for applications requiring very high resolution. Set the rate to *Low* to reduce the size of the result file for long runs. Automatic data reduction occurs if the number of data points collected since the data collection rate was last set exceeds 12,000 (see Section 9.8). Note that the data collection rate is fixed at 1.0 points/s for all wizard-controlled runs.

A reminder is issued if you start a run with *Data Collection Rate* set to *High* or *Low*.

4.4.3 Starting a manual sensorgram

With a sensor chip docked, choose *Run:Run Sensorgram* to start recording data.

Whenever you start a sensorgram manually, you will be asked to select the detection mode (Section 4.4.4) and flow rate (Section 4.4.5). The most recently used values are suggested for these settings.

If **Automatic Save** is enabled for manual sensorgrams (see Section 9.9), you will also be asked to specify the filename for saving the results.

The sensorgram will start a few seconds after you have accepted the last dialog box. During this delay, the pumps are filled and the needle is washed briefly in preparation for the run. Various flow rate and flow path settings appear in the status window at the sensorgram start, regardless of the settings you have requested. This is a normal part of the washing procedure. Your requested flow settings will be established before the sensorgram actually starts.

Once the sensorgram is started, data will be recorded until you choose **Run:Stop Sensorgram.** Events such as sample injections during the sensorgram are recorded in the event log. You can save the sensorgram with **File:Save** or **File:Save As** at any time without interrupting recording. However, once you have stopped a sensorgram you cannot resume recording except as a new sensorgram, either in a new file or appended to the previous file.

4.4.4 Setting the detection mode and flow path

You set the detection mode and flow path at the start of the sensorgram from the *Detection* dialog box:

The choice in this dialog box determines both the flow path and detection mode at the start of the run. Sensorgrams are recorded only from the flow cells in the chosen flow path. You can change the flow path during a run with

Command:Flow path: the detection mode will however not be changed and the new flow path must a subset of the original (e.g. you can change from Fc 1-2-3-4 to Fc 1-2 but not vice versa). The current detection mode and flow path are shown in the status window during a sensorgram.

When multiple flow cells are used, buffer flows through the cells in series (see Section 2.1.4). The dead volume between the flow cells is 0.3 μ l). At a flow rate of 20 μ l/min, the delay between the flow cells is about 1 s, corresponding to 1 data point at default data collection rate.

Reference curve subtraction

In multichannel mode, flow cell 1 and/or 3 can be used as a blank cell for on-line reference subtraction, providing direct recording and display of blank-corrected sensorgrams. This choice is made in the **Detection** dialog box at the start of the sensorgram and cannot be changed during a sensorgram. Reference curve subtraction automatically corrects for the small time delay between the flow cells. The available settings for reference curve subtraction are summarized below:

Flow path	Reference subtraction
Fc 1-2	2-1*
Fc 1-2-3-4	2-1 and 4-3 or 2-1, 3-1 and 4-1
Fc 3-4	4-3

* '2-1' means that the response in flow cell 1 is subtracted from that in flow cell 2, i.e. Fc 1 is the blank for Fc 2.

Choose *None* in the *Reference cell* box if you do not want reference subtraction.

Note: If you run a sensorgram without reference curve subtraction and want to subtract the reference curve on a later occasion, use BIAevaluation software.

Multiple sensorgram display

You can use the *View:Overlay, View:Plot Curve Classes* and *Window:New Window* commands to control how sensorgrams are displayed. See Section 4.8.1 for details. Creating multiple windows with *Window:New Window* is particularly useful when reference curve subtraction is used, to display original and subtracted curves simultaneously on different scales.

4.4.5 Setting the flow rate

To change the flow rate, choose **Command:Flow** and enter the required flow rate in the dialog box. The new flow rate will apply when you click on **OK**.

📑 Flo	w	×
5	Set Flow	OK
	<u>F</u> iow: μνmin Γ <u>B</u> efill	Cancel

The flow will continue at the set rate until you stop or change the flow. To stop the flow, either choose **Command:Stop Flow** or set the flow rate to zero. You can stop the flow while a sensorgram is running. Note however that injections cannot be performed while the flow is stopped.

Filling the continuous flow pump

The pumps are filled when a sensorgram is started, and are refilled automatically at the end of every pump stroke (or at the start and end of each cycle in method control). The stroke volume is 500 µl, and the refill operation takes about 7 seconds. To avoid disturbances arising from the refill operation during a critical analysis, you can refill the pump at any time in a manual run. Choose **Command:Flow** and check the **Refill** box. The pump will be refilled when you click on **OK**, even if you have not changed the flow rate.

The start and end of the refill operation (both automatic and manually requested) are recorded in the event log if a sensorgram is running, so that you can identify possible signal disturbances arising from this source.

4.4.6 Injecting sample

To inject sample over the sensor chip surface, choose **Command:Inject**. You cannot choose this command unless a sensorgram is running.

in la	njection			×
\mathbf{x}	- <u>I</u> njection in Fc 1-	2		Start Injection
	INJECT	•	☐ Variable <u>Contact</u> Times	Cancel
		Sample		
	Position:	JR1A3	<u> </u>	
	<u>V</u> olume:	35	μ	
	Contact Time:	105	s	
	Consumption:	65	μ	
				<u>M</u> ore >>

Inject commands for different application purposes are summarized below.

Command	Comments	Injected volume	Sample consumption	Max flow rate
INJECT	General purpose inject.	5-325 µl	Injected vol +30 µl	100 µl/min
KINJECT	Low dispersion inject for kinetics and for samples sensitive to dilution with running buffer. Controlled dissociation time after sample injection.	10-250 μl	Injected vol +40 µl	100 µl/min
QUICKINJE CT	Low sample consumption. Less preparation time than INJECT but more sample dispersion.	5-325 µl	Injected vol +10 µl	100 µl/min
COINJECT	Injection of second sample immediately following the first (e.g. for dissociation in the presence of ligand). Variable contact times for first sample only.	Sample 1: 10-100 μl Sample 2: 15-250 μl	Sample 1: injected vol +40 µl Sample 2: injected vol +40 µl	100 µl/min
BIGINJECT	Large volume inject. Direct inject up to 325 µl, sample loop between 326 and 425 µl, direct between 426 and 750 µl.	326-750 µl	Injected vol +52 µl	50 µl/min*
MANUAL INJECT	Manually controlled inject. See Section 4.4.8.	1-100 µl / loading	Loaded vol +30 µl	100 µl/min

*BIGINJECT cannot be performed at higher flow rates because the autosampler tubing must be refilled during injection from the sample loop for samples larger than 425 µl.

The dialog boxes for the various inject commands (except MANUAL INJECT, see Section 4.4.8) have a number of common features:

- **Position** fields have a pull-down list of valid positions according to the rack settings.
- You enter the volume of sample to be injected in the *Volume* field(s). The dialog box also displays contact time of the sample with the sensor surface (contact time = injected volume/flow rate) and the sample consumption for the injection (see table above).
- If the *Variable Contact Times* box is checked, volume fields appear for the flow cells in the current flow path (e.g. if you have set flow path 1-2-3-4 there will be four volume fields for an INJECT command). Each volume must be less than or equal to the volume in the preceding flow cell. For example, with four flow cells:

Permitted:	40	30	20	10
	40	40	20	20
	40	25	25	10
Not permitted	40	20	30	10
	40	30	20	30

Variable contact time injections are implemented by switching additional flow cells into the flow path as the injection proceeds. Injections in the separate flow cells thus start at different times and end at the same time. This is illustrated by the variable contact time sensorgrams shown below.

- a In	jection		×
ক্রি	- <u>I</u> njection in Fc 1-	2-3-4	Start Injection
1 **	INJECT	▼ Variable <u>C</u> ontact Times	
		Sample	Cancel
	Position:	R2E3 💌	
	<u>V</u> olume:	Fc1 Fc2 Fc3 Fc4 120 80 40 20 μl	
	Contact Time:	360 240 120 60 s	
	Consumption:	150 μl	
			More >>
L			J

Variable Contact Times is only available if you have chosen a multichannel flow path and are not using reference curve subtraction.

The *More>>* button opens additional options for the injection:

Options			
Predip Needle	Posi <u>t</u> ion:	R2F1	•
📕 E <u>x</u> tra Cleanup		·	

Check **Predip Needle** and enter a rack position to dip the needle in the specified position before aspirating sample. This operation also aspirates 10 µl from the predip position into the autosampler tubing to prevent the sample from coming into contact with running buffer. Use this feature to minimize carry-over between sample vials, e.g. when solutions of widely different composition are used in succession. Use of **Predip Needle** in an extra vial of sample can also help to minimize sample dispersion in the injection by improving the separation between injected sample and running buffer.

Check *Extra Cleanup* to perform an additional wash of the needle and IFC after the injection. Use this feature to minimize carry-over when the next injection uses sample of widely different composition. The IFC is routinely washed as part of the standard injection sequence. *Extra Cleanup* should be used if particular care is necessary, e.g. after injection of regeneration solution.

Click on *Start Injection* to start the injection. The system takes a while to prepare the injection, varying from about 0.5 up to 7 minutes depending on the kind of injection, the sample volumes and the options chosen (see table below). The event log records both the time when the injection was requested and the time at the actual start and end of sample injection.

Table 4-1. Approximate times for preparation and completion of inject commands at a flow rate of 20 μ l/min. Preparation time is the time between the inject command and the actual start of sample injection. Finishing time is the time between the end of sample injection and completion of the command, during which the flow system is washed. Finishing times for **KINJECT** do not include the dissociation time specified in the command.

Predip Needle adds about 8 s to the preparation time. *Extra Cleanup* adds about 70 s to the finishing times.

Inject command	Injected volume (µl)	Preparation time (s)	Finishing time (s)	No. of air segments
INJECT	20 100	80 90	50 50	2
QUICKINJECT	20 100	40 45	20 25	1
KINJECT	20 100	125 125	40 45	3
COINJECT	20, 20 100, 100	200 250	80 80	3
BIGINJECT	350 750	400 400	90 100	3
MANUAL INJECT	Preparation time for loop loading 100 μl: 80 s		85	2

4.4.7 Stopping an injection

To stop an injection, choose **Command:Stop Inject** or click on the **Stop Inject** toolbar button. The injection stops as soon as the command is chosen. Once an injection has been stopped in this way it cannot be resumed.

Choose what to do with the remaining sample. You may dispense remaining sample either to waste or to a specified rack position. The door is unlocked as long as the dialog box is displayed so that you can insert an empty vial if required to receive the remaining sample.

Inject	Injection Stopped				
	Remaining Sample Dispense remaining sample to	B1A4	OK		

When the remaining sample has been dispensed to the chosen position, the flow system is washed in the same way as when the injection is completed normally. You cannot stop an injection during the washing procedures which follow the normal sample injection. **Notes:** During the first injection for **COINJECT**, the **Stop Inject** command changes to **Skip Inject**. Choosing this command starts the second injection immediately. Sample remaining in the sample loop from the first injection is flushed to waste after the injection and cannot be recovered. The second injection can be stopped in the same way as other injection commands.

For BIGINJECT, you can recover sample which is currently in the autosampler tubing when the injection is stopped, but not that which is in the sample loop in the IFC.

See Section 4.4.12 for emergency stop procedures.

4.4.8 Manual injections

The MANUAL INJECT feature provides complete manual control of sample injection, with facilities for pausing and resuming the injection, changing flow rate, refilling the sample loop etc without ending the injection. This mode is useful for development work, e.g. for scouting for the minimum volume of regeneration solution needed to remove bound analyte completely from the surface.

Manual injections use the sample loop in the IFC, allowing uninterrupted injection of up to 100 μ l. Direct injection from the autosampler tubing is not used in this mode.

Choose **MANUAL INJECT** from the pull-down list of inject commands in the **Inject** dialog box and click on **Continue>>**.

E M	anual Injection Mode		×
X	Γnjection Δοίμπε μι μ μ μ μ		<u>Start</u> Stop
	Accumulated injected volume: Remaining volume in pump:	Ο μί 358 μί	Load Loop Cancel

The dialog box shows the accumulated injected volume and the volume of buffer remaining in the continuous flow pump. This latter figure gives you an indication of when the pump will be refilled, so that you can avoid refill operations during injections.

Follow the steps below to perform a manual injection.

1 Click on *Load Loop*, enter the sample position and the volume to be loaded (maximum 100 µl). The loop is loaded using 2 air segments between sample and buffer to reduce sample dispersion. You can also choose to predip the needle in a specified position to reduce carry-over from solutions of widely differing composition. Click on *OK* to load the loop and return to the manual injection mode dialog box.

- **Note:** The volume specified in this dialog box is the volume that can be injected. Approximately 30 µl more than this volume will be taken from the sample vial for air segments and priming the sample loop (see Section 2.1.4).
- 2 Note the volume remaining in the sample injection pump. If this volume is smaller than the volume you intend to inject, you may wish to refill the pump to avoid a pump filling operation during the injection. To refill the pump, choose **Command:Flow** from the menu or click on the **Flow** button on the main toolbar, check the **Refill** box and click on **OK** (see Section 4.4.5).
- 3 Choose either *Volume* or *Manual* mode:

Volume: The injection will stop automatically after the specified injected volume. Use this mode for injection of predetermined volumes.

Manual: The injection will continue until you click on *Stop*. Use this mode if you want to stop the injection interactively according to the appearance of the sensorgram. *The injection can continue indefinitely in Manual mode*. *Be careful not to inject more than the volume loaded in the loop*.

You can change the flow rate during a manual mode injection, but not during a volume mode injection. You can change the flow path in multichannel mode and stop the injection at any time in both modes.

4 Click on *Start*. The dialog box displays both the accumulated injected volume (i.e. the sum of all volumes injected since the start of manual injection) and the volume remaining in the sample injection pump. The volume injected since the last *Start* is shown in the sensorgram status window.

As a rule of thumb, do not inject more than 80-90% of the loaded volume (more at higher flow rates) to minimize the risk of sample dispersion effects at the end of the injected sample.

5 To interrupt the injection at any time, click on Stop. This will switch from sample to buffer flow over the sensor surface, but will not empty the sample loop or wash the IFC. You can re-load the sample loop while the injection is stopped. You can also use the autosampler to prepare samples using Mix, Transfer and Dilute while the injection is stopped (use the commands in the menu or the buttons on the main toolbar for these operations). Click on *Start* to resume the injection.

6 To end the manual injection, click on *Exit*. This will empty the sample loop to waste and wash the IFC.

4.4.9 Washing liquid handling system components

The liquid handling system is washed automatically as required during operation:

- The autosampler needle is washed after each sample handling operation (*Inject, Transfer, Mix, Dilute*).
- The IFC channels are washed after each injection.

The **Wash** command is provided to allow additional washing of the needle and recovery cup. The needle is washed with running buffer. Use this command as follows:

🌆 Wash	×
Wash Needle	OK
© IFC	Cancel

- Wash the needle whenever you suspect that there is a risk for carry-over which will not be handled by the regular wash, predip or extra cleanup features. This situation can arise especially when solutions of widely different composition (particularly ionic strength or pH) are used, or when different samples contain incompatible substances (e.g. enzyme and substrate). The needle washing operation takes about 20 seconds. Note that the predip feature available with all needle operations greatly reduces carry-over and can in many cases be sufficient.
- Wash the IFC when you change running buffer or when you have used a solution that may be difficult to flush out of the IFC channels (e.g. a viscous or very concentrated regeneration solution). All IFC channels including the flow cells will be washed with running buffer.

4.4.10 Saving the sensorgram

To save a sensorgram as a Biacore 3000 result file, choose *File:Save* or *File:Save As.* The first time a new sensorgram is saved, these commands are equivalent. Thereafter, *Save* saves the sensorgram under the same name, overwriting the earlier version, while *Save As* allows you to save the sensorgram under a new name, leaving any previous version unchanged.

Result files are saved with the default extension .blr.

If the *Automatic Save* function under *Tools:Preferences* is turned on, the sensorgram will be saved automatically at the specified interval (see Section 9.9). We recommend this feature as a precaution against losing data if the computer should lock up or lose power during a run. If *Automatic Save* is turned on, you must specify the file name for the sensorgram at the start of the run.

To save a sensorgram and associated data or the report point table in a format which can be opened by other programs, choose *File:Export* and select either *Curves* or *Report Point Table* from the sub-menu. This creates a text file with tab-separated data, suitable for use in spreadsheets and other applications.

You can save or export sensorgram data at any time during a run without interrupting data collection.

4.4.11 Stopping a sensorgram

To stop data collection, choose *Sensorgram:Stop Sensorgram* or click on the *Stop Sensorgram* toolbar button. The IFC flow channels are washed automatically if an injection has been performed, and the buffer flow is turned off.

Note: Once you have stopped a sensorgram, you cannot resume data collection in the same sensorgram. If you need to combine data from two separate runs, you must use curve presentation features in BIAevaluation or equivalent software.

4.4.12 Emergency stop procedure

To abort a run at any time, press *Ctrl-Break*. (The *Break* key is also marked *Pause* on standard keyboards.) This will immediately stop all current operations including buffer flow and data collection. You should normally wash the liquid handling system in connection with the emergency stop since no automatic washing procedures are performed. There are no facilities for recovering sample in this situation.

Do not use Ctrl-Break unless you need to stop all operations *immediately* (e.g. if continued operation constitutes a risk of damaging the instrument or losing valuable material). A controlled stop using *Stop Inject* and *Stop Sensorgram* is always preferable to Ctrl-Break.

4.4.13 Undocking the sensor chip

You can leave the sensor chip docked in the instrument for several days provided that liquid is kept flowing over the surface. You will however need to undock the sensor chip:

- when all four flow cells are used and you need a new chip.
- when the stability of your immobilized ligand requires that the chip should be stored under special conditions.
- when you are shutting down the system for more than 5 days (Section 4.7).

To undock the sensor chip, choose **Command:Undock**. Do not attempt to remove the chip without first undocking.

Undock		×
Z F	Empty flow cells	<u>U</u> ndock
		Cancel

If the *Empty flow cells* box is checked, the system will empty the flow cells before undocking. Always check this option unless it is essential to keep the sensor surface wet (some ligands and special surfaces may deteriorate on contact with air). Liquid will not leak into the optical system even if you undock the chip without emptying the flow cells.

When the undocking is complete (the sensor chip LED on the instrument front panel flashes), open the sensor chip port cover and remove the sensor chip cassette. The software will automatically prompt you to insert and dock a new chip.

4.5 Queuing manual commands

The command queue allows you to queue manual commands so that you do not have to wait until the current command is completed. Commands issued in manual mode are placed in the queue window and are executed as soon as the instrument activity permits. If the instrument is busy (e.g. during an injection), queued commands wait in order until the current operation is completed. You can also save the commands in the queue window as a simple method for later use. This means that you can use an interactive manual control session as the starting point for creating customized methods.

If the queue is not active, instrument commands in the toolbar and the **Command** menu are gray and cannot be used as long as the instrument is busy. Commands issued when the queue is not active cannot be used to generate a method.

4.5.1 Starting the command queue

Depending on the setting under **Tools:Preferences**, the command queue may be started automatically when a sensorgram is started. If this is not the case, start the queue by choosing **Command:Command Queue**. You can only start the queue while a sensorgram is running. When the command queue is active, the queue window is shown either minimized on the Windows taskbar or expanded in the sensorgram window area. The expanded window shows all commands in the queue, including those which have been completed (you may have to scroll the window to see all commands if the queue is long). The illustration below shows a command queue window with a *KINJECT* command in progress.

To expand the minimized queue window, simply click on the button on the task bar. You can resize the expanded window by dragging on the window borders (the size of the minimized window is fixed). To minimize the expanded window, click on the *Minimize* button on the window toolbar (standard Windows functionality). The expanded window can be moved anywhere on the screen by dragging. The minimized window can also be moved, but will always snap to the nearest corner of the sensorgram window.

4.5.2 Command queue window display

Commands are displayed in the command queue window as follows:

The minimized window displays an icon for the command currently being executed. The icon is the same as that which appears in the dialog box for the command (and on the toolbar for commands with toolbar buttons). The window shows a *Stop* icon if the queue is stopped, or no icon if execution of the queue is complete.

The expanded window shows 3 columns for each command (see illustration above), with command status, command icon and method command(s). Commands which have been executed are gray.

Command status

The command status is indicated by an icon:

indicates that the command has been completed (the command text is also gray)

indicates the command currently being executed

indicates that the queue will stop at this point

STOP

indicates that the queue has stopped at this point

indicates that this command has failed (either through instrument failure or because the user has pressed *Ctrl-Break*)

Commands which are waiting to be processed have no status icon.

Command icon

This icon is the same as that which appears in the dialog box for the command (and on the toolbar for commands with toolbar buttons). The following icons are not included in the toolbar but are used in the command queue:

Wash

Method command(s)

The method command(s) column shows the command as it would appear in a method. For some commands, there may be more than one method command for a single command icon: for example, an *Inject* command with options *Predip needle* and *Extraclean* appears as follows:

ľ	DIPNEEDLE R1A4
	🖋 INJECT R1A5 70
	EXTRACLEAN

4.5.3 Managing the command queue

Adding commands to the queue

To add a command to the queue, simply choose the command from the toolbar or the **Command** menu. The command will be placed at the end of the queue as soon as you click on **OK** in the dialog box for the command.

Note: The Manual inject command cannot be queued.

If the queue window is minimized, you will not see commands added at the end of the queue. Expand the window to display all queued commands.

Normally, commands in the queue are executed as soon as possible. If the queue is empty, a requested command will be executed immediately. If you want to hold the queue while you add commands, choose *Run:Stop Queue* from the queue window menu before you add instrument commands (see below).

Deleting commands from the queue

To delete commands from the queue, select one or more commands in the queue window and choose *Edit:Remove* from the command queue window menu. You will be asked to confirm deletion of the selected command(s). A temporary *Stop* icon will be placed at the first selected command, and execution will stop if the queue reaches this command while the confirmation dialog box is open. You can delete commands that have been executed ("gray" commands) and commands that are waiting to be executed, but you cannot delete the command that is currently being executed in the instrument.

To delete all commands in the queue (including "gray" commands), choose *Edit:Clear Queue*. The queue will be cleared immediately, but execution of the current command will continue to completion.

Editing commands in the queue

You can edit commands in the queue provided that they have not been executed or are currently being executed. Commands that are completed ("gray" commands) and the current command cannot be edited.

To edit a command, double click on the command or select the command and choose *Edit:Edit Command*. This will place a temporary *Stop* icon at the command and open the appropriate dialog box for the command. Execution will stop if the queue reaches this command while the *Edit* dialog box is open. Change the settings as required in the dialog box. The *Stop* icon will be removed when you click on *OK* to implement the changed command.

You can only change the settings within the same command in this way. To change one command to another (e.g. to change *Transfer* to *Dilute*), you must delete the old command and insert the new one.

Inserting commands in the queue

To insert a command at a given place in the queue, select the command directly after the insertion position and choose *Edit:Insert Command*. This will insert a blank line in the queue with a temporary *Stop* icon on the blank line. Execution will stop if the queue reaches this point while the command dialog box is open. With the blank line selected, choose the command you wish to insert. Execution will stop if the queue reaches this point while the command dialog box is open. The *Stop* icon will be removed when you click on *OK* to implement the inserted command.

You can only insert commands in the queue after the command currently being executed.

Stopping the queue

To stop the queue before a selected command, click on the command and choose *Run:Stop at Command* from the command queue window menu. This will insert a *Stop at Command* line in the queue immediately before the selected command. When execution reaches a *Stop at command*, the queue stops and the line status changes to a *Stop* icon. To continue execution after a *Stop*, choose *Run:Start queue* from the command queue window menu.

To remove a *Stop at Command* line which has not yet been reached in the queue, select the line and choose *Edit:Remove*.

To stop the queue after execution of the current command has completed, choose *Run:Stop Queue* from the command queue window menu. This places a *Stop at Command* line directly after the current command. You can hold the queue before inserting any instrument commands by choosing *Stop Queue* when the queue is empty.

To stop the queue immediately, press *Ctrl-Break* (see Section 4.4.12). This will stop the sensorgram and may abort the current command, which will then be marked with a *Failed* status icon in the queue.

Note: The queue window remains open after a **Ctrl-Break** stop, and must be closed before a new sensorgram can be started. You can generate a method from the queue before closing the queue window.

Closing the queue

To close the command queue, choose *File:Close* from the queue window menu or *Command:Command Queue* from the main window menu. Closing the queue will clear any queued commands. The sensorgram will however continue to run.

Stopping the sensorgram

You can only stop the sensorgram while commands are waiting for execution if the command queue is stopped. If there are commands in the queue, you will be warned that stopping the sensorgram will clear the queue. If you want to generate a method from the queued commands, do this before stopping the sensorgram. Stopping the sensorgram closes the command queue window.

Emergency stop procedure (Ctrl-Break)

If you press **Ctrl-Break** while commands are queued, the run will be aborted but the commands will remain in the queue window and can be saved as a method. You must close the queue window before you can start another sensorgram.

4.5.4 Generating methods from the command queue

To generate a method from the command queue, choose *File:Generate Method* from the command queue window menu. This will generate a method in a method editor window containing:

- introductory comments including the control software version from which the method was generated and a date and time stamp
- One APROG ("CommandQueue") containing the commands from the queue window. If the queue contains a command with *Failed* status (as a result of either technical failure or user intervention with Ctrl-Break), this will be marked with a comment in the method.
- a MAIN block which sets the thermo-racks, flow path and flow rate, calls the APROG CommandQueue and finishes with an APPEND standby instruction.

Stop at command lines do not generate any command in the method.

The method is complete in itself, and can be saved to disk. Running it will repeat the actions in the command queue. If you want to use a generated method as the starting point for your own method development, bear the following points in mind:

- Each method generation creates a self-contained method with an APROG with the same name. If you want to combine APROGs from different generated methods (using cut-and-paste in the method editor), remember to change the names in the DEFINE APROG blocks and the corresponding calls in the MAIN block.
- A generated method includes all commands in the queue at the time of generation. You may want to delete superfluous commands from the queue before generating the method.
- Commands in the generated method are not time controlled, and report points added during the manual (queue-controlled) run are not included in the method. You may wish to add time specifications and report points to the generated method.
 - **Note:** Method commands are generated exactly as they appear in the queue window. If you choose **Stop inject** during a queued injection, the generated method will include an INJECT command for the volume originally requested, not for the volume actually delivered. If you generate a method in connection with development work where you have stopped injections interactively, you may need to modify the generated method in accordance with the event log of the actual run.

4.5.5 Command queue window menu

In the expanded form, the command queue window has a menu bar with the following functions:

File:Generate Method	Generates a method from the commands in the queue (Section 4.5.4). The method will appear in a new untitled method editor window. See for details.
File:Close	Closes the command queue. This operation clears all commands from the queue. When the queue is closed, commands requested from the Command menu are executed directly without being queued.
Edit:Copy	Copies marked commands from the queue to the method editor clipboard. Copied commands can be pasted in a method editor window. They cannot however be pasted in another position in the queue.
Edit:Insert	Inserts a new command in the queue immediately before the marked command. Commands cannot be inserted before the command currently being executed.
Edit:Delete	Deletes the marked command(s) from the queue.
Edit:Clear Queue	Deletes all commands from the queue, including any which have not yet been executed. Does not close the command queue window.
Edit:Edit Command	Opens the appropriate dialog box for editing parameters for the marked command. Only commands that have not yet been executed can be edited.
Run:Start queue	Starts queue execution if it is currently stopped. This command changes to Stop queue when the queue is running.
Run:Stop Queue	Stops the queue after execution of the current command. This command changes to Start queue when the queue is stopped. Note that stopping the queue is not the same as closing it: commands issued while the queue is stopped will be placed in the queue and executed when the queue is started.
Run:Stop at Command	Places a Stop queue instruction immediately before the marked command. The queue will stop when this point is reached.

4.6 Method-controlled operation

Biacore 3000 can be controlled from a pre-programmed method for unattended operation. A method can include any number of analysis cycles, each represented by a sensorgram in the result file. This section describes how to operate Biacore 3000 under method control.

Note: The instrument door is locked during method operation, except when operator access to the autosampler is required. Method instructions that require this access are placed in a special DEFINE ALERT block in the method (see Section E.3.4).

4.6.1 Creating a method

To create a new method, choose *File:New Method* from the Control Software menu. Follow the steps below to enter an elementary method which can be used to illustrate method-controlled operation. Refer to Appendices E and F for details of method programming.

Note: You cannot use the method editor while a sensorgram is running.

Type the following lines in the method editor window (example):

define aprog practice flow 30 dilute r1a1 r1a2 r1a3 50 inject r1a3 25 end main detaction 1

detection 1 aprog practice end

This is a complete method which will prepare in position r1a3 200 μ l of a 1:1 mixture of samples from r1a1 and r1a2, then inject 25 μ l of this mixture over the sensor chip surface in flow cell 1 at a flow rate of 30 μ l/min.

Choose *Edit:Adjust Method:Minutes*. This will adjust the method appearance so that keywords are set in capitals, parameter names are in lower case, and commands are indented to show the block structure of the method.

```
DEFINE APROG practice
FLOW 30
DILUTE r1a1 r1a2 r1a3 50
INJECT r1a3 25
END
MAIN
DETECTION 1
APROG practice
END
```

The **Seconds** and **Minutes** options adjust time references in the method to the respective time base. There are no time references in this example, so the choice of option is irrelevant in this case. See Section 9.5 for a description of time base adjustment.

4.6.2 Checking and saving the method

It is important that method instructions are entered correctly, since a method with syntax errors cannot be run. The prerun facility checks the method syntax and identifies incorrect instructions.

Note: The prerun facility can only check the method syntax, not the intention of the method. It is your responsibility to ensure that the method instructions perform the right operations (e.g. that INJECT commands address the correct rack position and sample volume). A method with syntax errors can be saved but cannot be run.

Choose *Run:Prerun Method*. Refer to Section E.5 if you receive any syntax error messages. Correct syntax errors and repeat the prerun procedure.

Choose *File:Save As* to save the method. Method files are saved with the extension .blm.

4.6.3 Running a method

Methods are executed with the command Run:Run Method.

If a method editor window is active, this command will attempt to run the method in the window. If you have made changes to the method since it was last saved (or if the method has not been saved at all), you are given an opportunity to save the method before the run starts. The method definition is also saved in the result file from the run.

Before starting a method, check that the rack base definition is correct for the method and that the correct racks are placed in the autosampler compartment. See Section 4.2.4 and the description of the **RACK** command in Appendix F for more details.

Note: When the run starts, the method editor window will be hidden, whether or not you have chosen to save the method. The window will reappear when the method ends.

If no method window is active, the **Run Method** command prompts for a method to open.

A prerun is performed automatically whenever you execute a method. If there are syntax errors in the method, these will be identified in the method editor window. You must correct the errors and choose *Run:Run Method* again to start the method.

If the detection mode and flow path are not specified with a **DETECTION** instruction at the beginning of the **MAIN** block (see Section E.3.1), you will be prompted for these settings when the method starts.

You can use the sensorgram display functions described in Section 4.8 at any time during the run.

At the end of each APROG in a method, the needle is washed and the flow rate is set to 10 μ l/min. The flow path is set to the path that applied when the APROG was started. At the end of the method, the IFC flow channels are washed automatically and the flow rate is set to 0. The flow path is set to an undefined state (all valves are open). Completion of the method is indicated by a *Method ready* message box.

Choose *File:Save As* to save the sensorgrams from the method run in a result file. The result file will contain one or four sensorgrams for each cycle in the method according to the detection mode.

4.6.4 Tracing method operation

During a method-controlled run, the *View* menu includes a *Method Trace* command. Choosing this command displays a method trace window where the progress of the method can be followed.

APROG immob	×
FLOW 10 DILUTE r1a1 r2a2 r1a3 50 * INJECT r1a3 70 -0:30 RPDINT Baseline -b INJECT r1a1 70 * INJECT r1a2 70 EXTRACLEAN 8:00 RPDINT BND END	

The method trace window shows the current MAIN instruction at the top of the window. If an APROG is in progress, the APROG instructions are displayed below the MAIN instruction. Instructions are color-coded as follows:

- Grey Instructions which have already been executed (for technical reasons, this includes instructions which have not yet been reached but which do not result directly in instrument activity, such as the **RPOINT** instructions in the example above)
- Green The instruction which is currently being executed in the instrument.
- Red Instructions which have been sent to the instrument from the control software and are waiting for instrument resources to become available.

4.6.5 Stopping a method

To stop a method, choose *Run:Stop Method*. The method will continue to the end of the current command in the MAIN block (usually the end of the current APROG) and then stop. The flow system is washed automatically when the method stops.

You can stop a method immediately using the emergency stop Ctrl-Break (see Section 4.4.12). Note that if the current command in the MAIN block cannot be completed (e.g. if the temperature requested by a TEMP command cannot be achieved), you must use the emergency stop Ctrl-Break to stop the method.

4.7 Closing down the system

4.7.1 Biacore 3000 Processing Unit

Follow one of the procedures below to close down the Biacore 3000 Processing Unit, according to how long the system will be idle.

Overnight

The instrument can be left overnight with the sensor chip docked and the IFC and flow cells filled with buffer. We recommend that the pumps are allowed to run at a low flow rate by means of the *Standby* procedure (see Section 7.2.1). Make sure that there is sufficient buffer in the buffer reservoir (the procedure uses about 5 ml more buffer than required for continuous flow, i.e. 18 h operation requires about 10 ml buffer). As an extra precaution, particularly if your buffer has a tendency to precipitate, you may replace the running buffer with water. Use the working tool *Rinse* to flush the IFC and flow cells with water and then run *Standby* to leave water flowing through the system.

You can append **Standby** to a method to start the procedure automatically when the method is completed (see Appendix F).

Note: In contrast to earlier software versions, it is not necessary to stop **Standby** in order to start methods, wizards, tools, or manual runs, to create a wizard template, or even to undock a sensor chip. It is recommended therefore to leave **Standby** running when carrying out operations such as filling in a wizard template or loading the instrument racks, in order to prevent the flow system from drying out. The software will automatically stop the **Standby** procedure immediately before starting a new instrument operation.

Up to five days

To close down the system for up to five days, run *Working Tools:Close* (see Section 7.2.1). This flushes the system with liquid (water is recommended) from a predefined autosampler rack position then empties the IFC and flow cells.

More than five days

To close down the system for more than five days, run *Working Tools:Shutdown* (see Section 7.2.1). Follow the instructions on the screen. You will need water and 70% ethanol for this procedure.

4.7.2 Control Software

To close the Control Software, choose *File:Exit* or close the window using standard Windows techniques. If the current sensorgram or method has not been saved, you will be prompted to do so before closing the software. You cannot close the Control Software while a sensorgram is running.

You will be given a number of options for how to deal with the instrument before closing the application:

Select a radio button and click on *Next* to bring up the dialog box from the appropriate working tool. For more information on closing down the system, refer to Section 7.2.

Note: Closing the Control Software will not close the BIAevaluation application, even if it was started from the control software.

4.8 Viewing and evaluating results

The sensorgram window displays the results of the current run or the contents of a saved result file. Sensorgrams from both sources are examined in the same way. To open a result file, choose *File:Open* and select the required file.

4.8.1 Using multiple windows

You can display multiple sensorgram windows on the screen to show the sensorgram at different scales, different parts of the same sensorgram or different curves in the same run.

The display properties of separate windows are independent of each other with the exception of cycle number (the cycle can be chosen independently in a saved result file, but all windows show the current cycle during a run).

Choose *Window:New Window* to create a new window. Arrange windows either by dragging the appropriate window borders or choosing one of the *Tile* commands from the *Windows* menu.

Note: Multiple sensorgram windows can only show different views of a single result file. To combine sensorgrams from several result files, open the files in BIAevaluation and combine the separate results in a BIAevaluation project window.

4.8.2 Selecting sensorgrams

A *cycle* is defined as the result of one run, either a manual run or an **APROG** in a method (see Section E.3.2). A manual run generates one cycle only. A method run may generate any number of cycles. Each cycle contains either one or four sensorgrams (single and multichannel detection modes respectively), and may also contain additional curves (e.g. temperature or buffer volume) if these are requested in the method (see Section E.3.5).

Curve: - Sensorgram Fc=4 보

Choose the cycle to display in the **Cycle** window on the toolbar. The current cycle is always displayed during a method run, but you can change the displayed cycle when the method is complete. Choose the active curve in the **Curve** window on the toolbar. The active curve is the one to which the reference line and baseline functions apply (see Section 4.8.5), and the one for which coordinate values are displayed in the status window.

If you have several curves in the sensorgram window, the *View:Overlay* command will toggle between display of all curves and display of the active curve only.

4.8.3 Viewing curve classes

If you have used on-line reference subtraction, selecting the *View:Plot Curve Classes* command will plot all curves in the same class (original or referencesubtracted) as the currently selected curve. This simplifies automatic scaling since the original and reference subtracted curves are usually widely separated in terms of response values.

4.8.4 Scaling the display

To enlarge (zoom) a part of the sensorgram window, drag the cursor over the area to be enlarged (hold down the left mouse button at one corner of the area, move the mouse to the opposite corner, then release the mouse button). If you do this while a sensorgram is running and scaling is set to **Auto**, the scale(s) will be adjusted as soon as the sensorgram goes outside the display.

To revert to the previous display after zooming, select **View:Unzoom** or doubleclick in the window with the left mouse button. Up to 10 levels of zooming can be restored in this way.

Select *View:Scale* to open a dialog box where fixed limits can be set for the xand y-axes. Choose *Auto* to adjust the scales to include the whole sensorgram. Choose *Method* to display the sensorgram according to the scale defined in the method (this option is only available if the method includes a SCALE instruction, see Appendix F). Choose *Manual* to set the scale limits manually. You can also choose to display the sensorgram on a logarithmic scale.

Scale		×
<u>T</u> itle: p24 25nM		ОК
X Scale	Y Scale	Cancel
 Auto 	 Auto 	
🔿 Manual	C Manual	
🔿 Method	C Method	
Logarithmic	🖵 Logarithmic	
Min: 0	Mi <u>n</u> : -5000	
<u>M</u> ax: 1800	M <u>a</u> x: 30000	

Select *View:Adjust Scale* to adjust the scale so that the entire sensorgram is displayed in the window, regardless of any previous fixed or automatic scaling.

4.8.5 Reading coordinate values

You can read response and time values on the active curve using the reference line and baseline.

Select *View:Reference Line* to display the reference line. You can drag the (vertical) reference line with the cursor: the horizontal reference line follows the *y*-coordinate of the active curve, and the absolute coordinates of the reference

line are displayed in the status window. You can also move the reference line with the arrow keys on the keyboard.

With the reference line displayed, select **View:Baseline** to fix a baseline at the current position of the reference line. This baseline will remain in position as you move the reference line, and the status window will now display the *y*-coordinate at the reference line relative to the fixed baseline.

Thus to read a relative response value for example at the end of an injection:

- 1 Choose View:Reference Line.
- 2 Move the reference line to a position before the start of the injection.
- 3 Choose View:Baseline.
- 4 Move the reference line to the end of the injection and read the relative response from the status window.

To set a new baseline value, choose *View:Baseline* to turn the baseline off and repeat steps 2 and 3 above.

Note: The reference line coordinates shown in the status window are values from single data points. Use report points (see Section 4.8.6) to obtain values averaged over several data points to eliminate noise variations.

4.8.6 Setting report points

A report point records the time, response and other parameters (defined with the *View:Keywords* command, see Section 9.6) at a specified point in the sensorgram. In multichannel mode, report points can be set either for individual sensorgrams or for all four sensorgrams together. Report points are displayed in the report point table.

You set report points:

- interactively in manual runs, completed method runs and saved sensorgrams with the *Edit:Add Report Point* command or the report point toolbar button.
- in method runs with the **RPOINT** instruction. You cannot set report points interactively during a method run.

The *Edit:Add Report Point* command opens a dialog box for specifying the report point characteristics:

🖙 Add Report Point	×			
Fc2 · Fc1	ОК			
<u>⊥</u> ime: 1709.6 s				
Window: 5 s	Cancel			
Id: p24 bound				
Easeline Baseline				
Apply to all curves				

Enter the time for the report point. If the reference line is displayed (see Section 4.8.5), the position of the reference line is suggested as the time for the report point. Use this feature as an aid in placing report points interactively.

The *Window* parameter determines the window over which the response values will be averaged for the report point. The default value of 5 s is suitable for most purposes. You may want to increase the window if your sensorgram is noisy.

The *Id* parameter appears as an identification of the report point in the report point table. You can enter up to 31 characters in this field.

Check the **Baseline** box if you want this report point to be used as a baseline for calculating relative response values in subsequent report points.

Check **Apply to all curves in window** if you want the report point to be set for all sensorgrams in multichannel mode. If this box is not checked, the report point will be set on the active sensorgram only. This setting is irrelevant in single channel mode.

Editing report points

To change the settings for an existing report point, double-click on the appropriate line in the report point table. This will open the *Edit Report Point*

dialog box, which has the same fields as *Add Report Point* described above. Change the settings as required and click on *OK*.

4.8.7 Report point and event log markers

Report points are marked with an **x** on the curve and an indication of the report point window. Events recorded in the event log (see Section 4.8.8) are marked as small triangles on the x-axis of the sensorgram.

Choose *View:Markers* to toggle the display of report point and event markers on or off.

To identify a report point or event marker, turn on the reference line (see Section 4.8.5) and click on the appropriate line in the report point table or event log respectively. The reference line will jump to the marker for the selected point or event provided that the marker is within the current window.

Note: Event log markers are placed at the exact time of the event, which may not correspond precisely to a data point. The reference line can however only be placed on data points. There may thus be a slight discrepancy between positions of the event marker and reference line. The discrepancy is more pronounced when the data collection rate is set to Low (1 point/10 s).

4.8.8 Event log

The event log records all events during a run, including a time-stamp at the beginning of the run and the flow cell temperature at the beginning and end of the run. Choose *View:Extended Event Log* to display a full version of the event log including low data quality events. This can be useful in instrument troubleshooting situations.

Event <u>L</u> Time	og Info	
0.0	Timestamp: 02-jun-98 14:53:10	
0.0	Set Temperature: 25.0 °C	
0.0	Temperature: 25.01 °C	
0.0	Rack 1 (Left): Thermo_C	
0.0	Rack 2 (Right): Thermo_A	
0.0	Flow Cell: 1-2	_

4.8.9 Printing sensorgrams

To print sensorgrams and associated data, choose *File:Print*. Select the items to print from the dialog box.

📰 Print Results		×
Printer: HP DeskJet 870C Series on LPT1:		OK
System Information		Cancel
Sensorgram Graph Table	✓ Wizard <u>R</u> esults ✓ Notebook	
Event Log	Options Fit To Page	Set <u>u</u> p
All Cycles	□ <u>D</u> raft	<u>M</u> ore >>

Check the *Fit To Page* box to fit each item to a separate page. Click on the *More>>* button for page setup options. For more details, see *File:Print* (Section 9.4).

Note: Sensorgrams and report point tables will be printed as they are displayed on the screen with respect to scaling, overlay and active curve.

If you want to use sensorgrams as illustrations in other Windows programs (e.g. word processing programs), choose *Edit:Copy Graph*. This will copy the current sensorgram window to the Windows clipboard, from where it can be pasted in to other applications.

4.8.10 Evaluating sensorgrams

You can use the Control Software to display and print sensorgrams and to set report points as described above. For more advanced evaluation, choose **Tools:Evaluation.** This gives access to BIAevaluation software, which provides extensive facilities for evaluating sensorgram data, with model fitting procedures for calculating kinetic constants from the sensorgrams. BIAevaluation also includes functions for sensorgram presentation and evaluation of analyte concentration from rate or binding level measurements. These functions are described separately in the BIAevaluation Software Handbook.

You can also choose to export sensorgram data or report point tables to text files for use in other spreadsheet or data evaluation programs.
5 Application Wizards

Application Wizards help both new and experienced users perform their analyses quickly and confidently. An application wizard is a software tool that guides you through the steps in an experiment, from start to final analysis. When you use an application wizard, you enter all required settings for the run as you step through the dialog boxes. Operation of the instrument does not start until you click on **Start** in the final dialog box of the wizard sequence. You are then asked to specify a file name for saving the results, and all the operations required for your analysis are performed automatically in a pre-programmed sequence.

Procedures and recommendations in the application wizards are based on accumulated expertise from analyses with Biacore systems. Detailed on-line help can be accessed from the dialog boxes in the wizards.

Settings for wizard-supported analyses can be saved as templates to simplify repeated or similar analyses. The settings are also saved with the result file so that the analysis can be repeated even if no wizard template was saved.

Application wizards complement the alternative ways of running Biacore 3000. Interactive operation through menus and dialog boxes, command queues for method development and pre-programmed method control using MDL are fully supported in the software.

Note: The data collection rate for runs made using the application wizards is fixed at 1.0 point/second (equivalent to the Medium setting for Method runs). Settings made using the **Run: Data Collection Rate** command apply to manual and method runs and have no affect on the wizard data collection rate.

Application wizards currently provided with Biacore 3000 Control Software give support for:

Surface preparation

- Immobilization pH scouting: find a suitable immobilization pH based on ligand preconcentration experiments.
- Immobilization (standard immobilization of ligand or capture molecule on a sensor chip docked in the instrument): either specify flow rate and injection time for the immobilization or let the wizard find conditions for reaching a specified target immobilization level.
- Immobilization in Surface Prep: Immobilize ligand or capture molecule on the sensor chip surface in the Surface Prep unit. Choose between immobilization in separate flow cells (SP_1 configuration) or a single large area flow cell (SP_2 configuration).

5.1 Using application wizards

- Regeneration scouting: find suitable regeneration conditions.
- Surface performance test: determine the analyte binding capacity of the surface and test how well the immobilized ligand withstands regeneration conditions.

Analyte recovery

Recover ligand-bound analyte from the sensor chip surface in a small volume, ready for downstream applications such as mass spectrometry (MS).

- Recover from the IFC with a sensor chip docked in the instrument, or from the large-area flow cell format of the Surface Prep unit.
- Collect analyte into a sample vial, or deposit directly on a MALDI target for MS analysis.

Binding analysis

Monitor binding levels in up to four consecutive analyte injections. Results are presented as bar charts.

Kinetic analysis

- Concentration series: determine kinetic parameters from analysis of analyte binding over a range of concentrations. The application wizard evaluates the results according to a simple 1:1 interaction model and presents the apparent kinetic constants automatically.
- Baseline trends: display baseline response as a function of cycle number to help assess surface performance and regeneration during the analysis.
- Mass transfer control experiment: analyze binding as a function of flow rate to identify mass transfer limitations.
- Linked reactions control experiment: analyze dissociation as a function of time at steady state to identify linked reaction schemes.

Customized applications

• Program your own command sequences for applications that are not covered by the other application wizards.

5.1 Using application wizards

5.1.1 Starting application wizards

To start an application wizard, choose *Run:Application Wizards* from the main menu. Choose the wizard you want to run and click on *Start*.

📅 Run Application Wizard	X
Surface Preparation Analyte Recovery Binding Analysis Kinetic Analysis Customized Application	<u>S</u> tart <u>U</u> se Template
	Cancel
The Surface Preparation Application Wizard guides you essential steps in preparing the sensor surface for analy activity after regeneration.	through the sis and testing the

To use a saved wizard template (see below), click on **Use Template** in the wizard selection dialog box and select the template file to use. When you use a template, the saved settings for all the wizard dialog boxes appear as default: you can make any changes you require to the settings as you step through the wizard. Using a template thus provides a convenient way of repeating an analysis either exactly or with minor changes. Note that if you use a template the choice of wizard is determined by the content of the template file: the wizard selected in the dialog box is irrelevant.

You can also start an application wizard from the result file saved from a wizardsupported run. This will open the appropriate application wizard with settings as used in the result file. To do this, open the result file, choose *View:Wizard Template* and click on *Edit* or *Run* in the dialog box:

The *Edit* option opens the wizard template at the first screen, so that you can step forwards through the wizard making changes to the settings as required. The *Run* option opens the wizard template at the end of the wizard, so that you simply need to click *Start* in the wizard dialog in order to repeat the run exactly. You may of course step backwards through the wizard to make any changes you need.

When you close a wizard where you have entered sample details, you are given the option of saving the wizard template for future use.

5.1.2 Wizard templates

The settings used in an application wizard can be saved in a template for later use. This makes it easy to repeat a wizard-based analysis.

If you close a wizard after having made changes to the template, you will be given an opportunity to save it: You can also save the template from the **Menu** option that is available in some wizard dialog boxes. Wizard templates are saved by default with file type .blw in the **BIA Users\Templates** folder.

To create a wizard template and save it for later use, you can also choose **New:Application Wizard** from the **File** menu. This will allow you to select a wizard and step through it, then save the template when all parameters are defined.

A saved wizard template contains all settings up to and including the point at which it was saved, and these settings are presented as default when the template is used.

5.1.3 Common wizard functions

The functions below are common to most application wizards:

Autosampler rack positions

The wizard suggests autosampler rack positions for samples, reagents and empty vials (if necessary) based on the requirements of your application. You can change the placing of vials in the racks simply by dragging the appropriate filled vial position. You cannot move a vial to a position which does not have sufficient volume capacity.

Surface	Preparation	on - Rack Posit	ions	×
Position	Vol. (µl)		Content	_
R2 A1	110	EDC		
R2 A2	110	NHS		
R2 A3		Empty vial for	mixing, min. capacity 200 µl	
R2 A5	75	Ethanolamine		
R2 A10	50	50 mM NaOH		
R2 B1	110	EDC		•
	THERM	0_C 💌	THERMO_A	
		 • •<		
<u>H</u> elp		Menu 🔽	< <u>B</u> ack <u>N</u> ext> <u>C</u> lose	

Note that the volumes listed in the table at the top of the dialog box may change if you change vial positions. The wizard presents minimum volumes required for standard vials for each rack type and position.

You can also change the rack type(s) from the pull-down lists above the rack illustrations. If you change a rack type, all positions are cleared. To place samples in the new rack, either click on a rack position to place the sample that is highlighted in the table (the highlight moves automatically through the table as you do this), or choose **Default Positions** from the menu. This option will assign vials to their default positions in the new rack.

Menu options

Some of the application wizard dialog boxes have an additional *Menu* button for auxiliary functions:

Help Menu Default Positions Clear Positions	<u> </u>
Save Wizard Template Save Wizard Template As Notebook	
Dilution Calculator	
Print Wizard Template Print Rack Positions	
Default Positions	Places samples in their default positions in the currently selected rack(s). Only available in the Rack Positions dialog box.
Clear Positions	Clears all sample positions from the racks. You must place all samples in positions in the racks before you can continue. Only available in the <i>Rack Positions</i> dialog box.
Save Wizard Template (As)	Saves the current wizard settings as a wizard template.
Notebook	Opens the run notebook where you can enter comments on the wizard. See Section 9.6 for a description of the run notebook. Only comments in a section identified by a <i>Wizard Notes</i> header will be saved with the template: all comments will be saved with the result file.
Dilution Calculator	Opens a utility for calculating volumes required for preparing a dilution series (see below).
Print Wizard Template	Prints all current settings for the wizard.
Print Rack Positions	Prints a summary of the samples and rack positions required for the analysis.

To use the dilution calculator, enter your stock solution concentrations, final concentrations and final required volumes in the first screen. You can also enter a stock solution name if desired:

	Stock conc	Final conc	Final vol	
1	1000	500	200	
2	1000	300	200	
3	1000	150	200	
1	300	75	200	
5	300	37.5	200	
5	75	15	200	
7	75	7.5	200	
B				
9				
0				

To calculate required volumes, click on Next:

🗾 Di	🖬 Dilution Calculator 🛛 🔀							
Stock	Stock Solution Name: p24 c3056 Number of Significant Digits: 4							
	Stock conc	Final conc	Final vol	Buffer vol	Stock vol	Total vol 🔺		
1	1000	500	200	100	100	200		
2	1000	300	200	203	87	290		
3	1000	150	200	170	30	200		
4	300	75	200	195	65	260		
5	300	37.5	200	175	25	200		
6	75	15	200	160	40	200		
7	75	7.5	200	180	20	200		
						-		
Ŀ	<u>H</u> elp <u>P</u> rint.			< <u>B</u>	ack <u>N</u> ext>	<u>C</u> lose		

In this second screen you can adjust the calculated volumes to more convenient values simply by typing new values where required. All related values are recalculated every time you change a value. For example, you may wish to adjust the stock volume in row 2 in this example to 90: the buffer and total volumes are adjusted automatically to 210 and 300 respectively. You will be alerted if you enter a volume that is not sufficient for your requirements.

No units are specified for either concentration or volume: it is assumed that all values are entered in the same units.

Note that the total calculated volume is the sum of your final volume and any additional amount that is needed for further dilutions (in the example, the final concentration 300 is used as stock for two additional concentrations, and requires a total volume of 200+90).

Click on *Print* to print the dilution protocol.

Prepare Run summary

The last dialog box before starting a wizard-controlled run summarizes the samples required for the run and their positions in the autosampler. Take time to check through this summary to make sure that all samples are in place before starting the run.

Position	Volume (µl)	Content	
A1	75	Licend1	
A2	75	Ligand?	
A3	75	Ligand3	
A4	75	Ligand4	
A5	. •	Empty mix vial, minimum capacity 200 µl	
A6		Empty mix vial, minimum capacity 200 µl	
B1		Empty mix vial, minimum capacity 200 µl	
B2		Empty mix vial, minimum capacity 200 µl	
C1	445	NHS	
C2	445	EDC	
C3	225	Ethanolamine	
F Prime B	efore Run 🛛 🔽	Standby Flow After Run	

Here you can check the *Prime Before Run* box to prime the system (see Section 7.2) before the run starts, and the *Standby Flow After Run* box to start the *Standby* working tool (see Section 7.2) when the run is completed.

5.2 Getting help on wizards

The application wizards are provided with extensive on-line help, accessed either from the *Help* option in the main menu or directly from the wizard dialog boxes. This chapter does not document all features of the application wizards: use the on-line help to learn more details of how to use the wizards.

To open help from the menu, choose *Help:Help on Application Wizards*. Navigate through the help screens with standard Windows techniques.

The *Help* button in each wizard dialog box opens the help at the screen which applies to the box in question.

To get help on a particular setting in a wizard dialog box, click on the question mark at the right hand end of the dialog box title and then click on the setting. Help is displayed in a pop-up window.

5.3 The surface preparation wizard

🖌 Assay Principle 🔗 🔀	
Assay Principle	
Direct Binding	
C Binding Using Capturing Molecule	
Capturing Parameters	
Name: Capturing Molecule Elow Rate: 5 (µl/min)	
Flow rate for the analysis (µl/min)	
Help < <u>Back</u> Next> Close	

5.3 The surface preparation wizard

5.3.1 Surface preparation wizard functions

The surface preparation wizard provides support for:

- Scouting for a suitable immobilization pH.
- Immobilizing ligand using defined immobilization conditions or to a pre-set target level.
- Immobilizing ligand in the Surface Prep unit.
- Preparing reference surfaces for in-line reference subtraction.
- Finding suitable regeneration conditions.
- Testing analyte binding capacity and regeneration conditions.

An overview flow diagram for the surface preparation wizard is shown in Figure 5-1. More detailed flow diagrams can be found in the appropriate sections for each wizard step.

Figure 5-1. Overview flow chart for the surface preparation wizard.

5.3.2 Immobilization pH scouting

A flow diagram for the *Immobilization pH Scouting* wizard is shown in Figure 5-2.

Figure 5-2. Flow chart for the immobilization pH scouting wizard component.

The *Immobilization pH Scouting* wizard component tests ligand preconcentration in selected buffers. The sensor chip surface is not activated, and may be used for immobilization when suitable buffer conditions have been established. Buffers listed include immobilization buffers supplied by GE Healthcare: these cannot be deleted from the list. You can use the *Add* and *Remove* buttons to add and remove your own buffers.

Note: Immobilization pH scouting applies only to CM-series sensor chips.

5.3 The surface preparation wizard

🌆 SurfPrep - ImmobPH.blr	- Immobilization pH Se	couting 🛛 🗙
Buffers		
I0 mM Acetate, pH 5.50		<u>A</u> dd
IU mM Acetate, pH 5.00 ■ 10 mM Acetate, pH 5.00	_	Remove
10 mM Acetate, pH 4.00		
Prepare ligand solutions in I	the buffers you have chose	'n
<u>H</u> elp	< <u>B</u> ack <u>N</u> ext>	Close

The sensor surface is washed with running buffer between ligand injections, which is normally sufficient to remove ligand bound during the preconcentration step. To ensure that the surface is properly cleaned after completion of the immobilization pH scouting, one or two washes with user-defined solutions are performed at the end of the wizard sequence:

📰 SurfPrep - ImmobPH.blr - Wash	1 ? X
Wash Method	Wash Flow Rate
Single Injection	Elow Rate: 20 [µl/min]
C <u>I</u> wo Injections	
Solution / Injection	
Solution: 1 M Ethanolamine-HCl	▼ Injection Time: 15 [s]
	Predip Needle:
This wash will be performed once at the	end of the wizard run
	ack <u>N</u> ext> Close

Results are presented either as an overlay plot of the preconcentration sensorgrams or as a table of response levels just before the end of the ligand injection.

The results of immobilization pH scouting are intended as guidelines for choice of immobilization conditions, and should be interpreted according to the requirements of the experiment at hand. Typically, amine coupling will result in immobilization levels around 60-80% of the preconcentration levels, although this value varies between individual ligands according to the reactivity of coupling groups on the ligand and the pH at which immobilization is performed.

5.3.3 Immobilization

A flow diagram for the *Immobilization* wizard is shown in Figure 5-3.

Figure 5-3. Flow chart for the immobilization wizard component.

Immobilization on Sensor Chip CM5 using amine coupling chemistry and on Sensor Chip SA using direct binding of biotinylated ligand are currently supported.

Preparing in-line reference cells

Blank surfaces for in-line reference cells may be prepared by checking the appropriate box in the dialog box:

Surface Preparation - Aim for Immobilized Level						
	Flow Cell	Blank	Ligand Name	Target [RU]	Wash Solution	
	1					
	2		Anti-p24 C3047	250	1 M Ethanolamine-HCl	•
	3	Г				
	4					
	<u>H</u> elp			< <u>B</u> ack	<u>N</u> ext > Clos	е

Flow cell 1 can be used as an in-line reference for flow cell 2, and flow cell 3 for flow cell 4. In this example flow cell 1 is prepared as a reference for flow cell 2, while flow cells 3 and 4 are not used.

Blank surfaces prepared in this way are activated with NHS/EDC and deactivated with ethanolamine, without immobilizing ligand. For some applications, particularly those using low immobilized levels and low response levels, blank surfaces should preferably be prepared by immobilizing an equivalent amount of an irrelevant protein (e.g. non-binding antibody). To prepare this kind of blank surface, immobilize the irrelevant protein in the reference cell in a separate surface preparation step: do not check the reference cell box.

Aiming for immobilized ligand level

This option is only available for immobilization on Sensor Chip CM5.

When you use the **Aim for Immobilized Level** option, the wizard programs the following operations:

- 1 Inject a short pulse of ligand solution without activating the surface, to determine the rate of binding of ligand to the surface.
- 2 Inject a pulse of wash solution (e.g. 1 M ethanolamine-HCl) to remove bound material from the surface. You can specify different wash solutions for each flow channel.
- If the binding rate as determined in step 1 is suitable (i.e. the target level can be reached within a reasonable time frame), continue with step 4.
 Otherwise, abort the procedure with an appropriate message.
- 4 Activate the surface with NHS/EDC.

- 5 Inject ligand in pulses using a contact time based on the binding rate estimated in step 1 so that the target level is expected to be reached after a few pulses. The injection procedure is stopped when the target level is reached or if:
 - the sample loop is empty
 - the target level is not reached within 20 injection pulses
 - the response level decreases during an injection pulse.

The reason for the injection procedure being stopped is indicated in the *Reason* field of the wizard *Results* dialog box (see *Presentation of results*).

- 6 Inject ethanolamine to complete the immobilization procedure.
- 7 Display the results.

For this procedure to be successful, it is important that the rate of ligand binding to the surface is within the range that will allow the target level to be reached. If the binding level overshoots the target in the first injection pulse, reduce the ligand concentration and/or use immobilization buffer with a pH that gives less than the maximum binding rate. As a rule of thumb, use ligand concentrations in the range 5-50 μ g/ml for high immobilization levels and 1-20 μ g/ml for low levels. Use lower concentrations if the analyte molecular weight is high.

Presentation of results

Results from immobilization are presented as a table of response levels. Note that the immobilization results are also shown as a sensorgram in the regular sensorgram window.

🖬 Aim4_22.blr - Results							
Sensor Chip CM5							
Fc Ligand	Response 1	Response 2	Procedure	Reason	<u>H</u> elp		
	(bound)	(final)			Print		
1 CaM-BD	10011.3	11245.6	Aimed for 10000 RU.	Level reached	_ <u>_</u> m		
2 Control	8853.2	9012.4	Aimed for 10000 RU.	Abort-Sample loop empty			
3 CaM-BD	7605.8	7752.2	Aimed for 10000 RU.	Abort-Response decrease			
* 4 Control	#N/A	#N/A	Aimed for 10000 RU.	Too fast binding of ligand			
*4 Control #N/A #WA Aimed for 10000 RU. Too fast binding of ligand The surfaces in flow cells marked with * have not been activated and may be used again							

A typical sensorgram from immobilization using *Aim for Immobilized Level* is illustrated below:

Steps in the immobilization procedure are as follows:

- 1 Injection of ligand to determine binding rate (only for *Aim for Immobilized Level*).
- 2 Short pulse of wash solution to remove any bound material remaining from step 1 (only for *Aim for Immobilized Level)*.
- 3 Activation with NHS/EDC.
- 4 Injection of ligand (may be several pulses in Aim for Immobilized Level).
- 5 Injection of ethanolamine.

Report points are set as follows for calculating the amount of immobilized ligand:

- a) Baseline before start of immobilization procedure (only for *Aim for Immobilized Level*).
- b) Baseline before activation with NHS/EDC.
- c) Response level after activation with NHS/EDC.
- d) Response level after injection of ligand.
- e) Response level after deactivation with ethanolamine.

The response levels reported in the wizard results are as follows:

Response 1 (bound) Difference between report points D and C Response 2 (final) Difference between report points E and B

In *Aim for Immobilized Level*, the assessment of the level reached is made on the basis of response 1, which represents the amount of ligand bound to the surface after ligand injection. Note that this will probably differ from the amount of ligand actually immobilized on the surface. In general, high immobilization levels are more correctly represented by response 2, while low levels are closer to response 1.

5.3.4 Immobilization in Surface Prep

A flow diagram for the *Immobilization in Surface Prep* wizard is shown in Figure 5-4.

Figure 5-4. Flow chart for the Immobilization in Surface Prep wizard component.

Note: A dummy sensor chip must also be docked in the instrument in order for the procedure to be run when performing immobilization in the Surface Prep unit (see Appendix G).

Choice of flow cell configuration

The configuration of the Surface Prep unit to be used for immobilization is selected in the dialog box:

📰 Surface Preparation - S	urface Prep (Configuration	×
Use Surface Prep:			
Surface Prep type 1			
Surface Prep type 2			
Immobilization in large area flow	v cell.		
Help	< <u>B</u> ack	<u>N</u> ext >	Close

Select the Surface Prep configuration required and click on *Next* to display the *Surface Prep Sequence* dialog box.

Note: The configuration of the Surface Prep unit must also be set physically, using the appropriate hardware options (with matching flow cell carrier and inject block), as described in Appendix G.

In the type 1 configuration, four flow cells are available (as in standard operations with the sensor chip docked in the instrument) and the flow cell is selected using the drop-down menu:

🖙 Surface Preparation - Surface Prep Sequence	X
Configuration: Surface Prep type 1. Flow Cell: 1	Time (min) 7,00 7,00 7,00 7,00 7,00 7,00 7,00 7,0
<u>H</u> elp <	Back Next > Close

In the type 2 configuration, the Surface Prep unit presents a single, large area flow cell and consequently, there is no flow cell selection (see Section G.2.2). Apart from the number of flow cells available, the remaining steps in the *Immobilization in Surface Prep* wizard component are the same, independent of whether the type 1 or type 2 configuration is used. The dialog box displays three default injection types, which support standard amine coupling of ligand to Sensor Chip CM5. Select an injection type and click on *Edit* to change the injection parameters, or on *Add* to set parameters for additional injections in the sequence, if required. The dialog boxes for *Edit* and *Add* are functionally identical:

5.3 The surface preparation wizard

Add New Injection							
Injection Type © Inject © Mix and Inject	Injection Settings Injection _ime: 1 [min] Elow Rate: 10 [μl/min]						
Solution Solution Name: conditioning (50mM NaOH)							
Extra Wash after Injection with: 0.1 M NaOH							
Help	OK Cancel						

Select the injection type with the *Inject* or *Mix and Inject* radio button, and enter the solution name(s), in the *Solution Name* field. Enter injection settings in the *Injection Time* and *Flow Rate* fields. Check the *Extra Wash after Injection* with box if an extra wash is required and select a solution name from the pull-down menu (choose from the default list, or enter your own). Once all injection parameters have been entered, click on *OK* to return to the *Surface Prep Sequence* dialog box.

📰 SP2.blw - S	urface Prep Sequence		×
Configuration: Su	irface Prep type 2.		Injection
Injection Type	Solution		Add
Mix and Inject	EDC & NHS	7,00	
Inject	calmodulin binding peptide	7,00	<u>E</u> dit
Inject	Ethanolamine	1.00	Delete
Inject	Conditioning (SUMM NaUH)	1,00	Delete
			Move Injection
			Up
			Do <u>w</u> n
1			
<u>H</u> elp		< <u>B</u> ack <u>N</u> ext >	Close

To change the order of the injection sequence, select an injection from the list and use the **Up** or **Down** button. Click on **Next** to proceed to the **Rack Positions** dialog box.

Since there is no SPR detection available when using the Surface Prep unit, no sensorgram is produced and no event log is displayed. The *Results* dialog box displays the run log:

	1	Close
Time	Description	
2003-02-12 09:59:14	Run start	<u>H</u> elp
2003-02-12 10:02:13	Injecting "EDC" - R1A1	
2003-02-12 10:05:42	Run end	Print
2003-02-12 10:09:11	Run end	

5.3.5 Regeneration scouting

A flow diagram for the *Regeneration Scouting* wizard is shown in Figure 5-5.

Figure 5-5. Flow chart for the Regeneration scouting wizard component.

Running regeneration scouting

The regeneration scouting wizard component helps you to find suitable regeneration conditions for your ligand. The first dialog box asks for conditions for the first analyte injection, and leads to the rack editor and run protocol dialogs. Once the run is started, the wizard provides a summary of the results for each injection and the opportunity to inject regeneration solution or new analyte or to finish the scouting run. When appropriate, the dialog box also indicates that a new injection of analyte is recommended:

Solution	Time	Flow	Remaining RU	Percent	Regeneration
anti-transferrin	2.00	20	33.3	100	
10 mM Glycine, pH 3.0	0.50	20	41.4	124	Add Analute
10 mM Glycine, pH 2.5	0.50	20	41.0	123	
10 mM Glycine, pH 2.5	0.50	20	25.2	76	
10 mM Glycine, pH 2.5	0.50	20	22.0	66	<u>F</u> inish
10 mM Glycine, pH 2.0	0.50	20	5.6	17	
Analyte removed in last inj Analyte remaining after las	ection: t injection:	16.4 RU	(efficiency: 74%)	
Manu analyte inigation is re	oommond.	- 0.0110 -d			11 ala

You determine the injection conditions for each new injection of regeneration solution or analyte:

🖙 Surface Preparation - Regenerate	×
Regeneration Solution	
10 mM Glycine, pH 1.5 10 mM Glycine, pH 2.0 10 mM Glycine, pH 2.5 10 mM Glycine, pH 3.0 50 mM NaOH	<u>A</u> dd <u>R</u> emove
Injection Settings	
Injection Time: 0.5 [min] Flow Rate: 2	20 [μl/min]
Position: R1A1 Required volum	me: 65 μl
The door is unlocked until you press Start	
<u>H</u> elp <u>S</u> tart	<u>C</u> ancel

Click on the pull-down marker beside the **Position** field to open a rack display where you can select the position from which to inject solution. Note that there is no automatic support for checking that a vial is present in the selected position, or for monitoring the volume of solution remaining in the vial. However, the amount of solution required for the current injection is displayed beside the **Position** field.

Presentation of results

The results of regeneration scouting are presented as a table of analyte binding levels for each injection:

Cycle	Fc	Solution	Time	Flow	AbsResp	Remaining	Analyte	łŀ	
6	2	anti transforrin	[[min]	pp/minj 20	11537 5	[KU]	100	11.	<u>H</u> elp
6	2	10 mM Glucino in H 3.0	2.00	20	11537.5	JJ.J 41.4	100		Print
6	2	10 mM Glycine, pH 3.0	0.50	20	11545.0	41.4	124	.	<u>_</u>
0 6	2	10 mM Glycine, pH 2.5	0.50	20	11509.2	25.2	76		
0 6	2	10 mM Glycine, pH 2.5	0.50	20	11526.2	22.0	33		
6	2	10 milli Glycine, pri 2.5	0.50	20	11520.2	22.U E G	17		
6	2	10 mM Glycine, pH 2.0	0.50	20	11509.0	3.0	12		
0 A	2	anti-traneferrin	10.00	20	116/2.0	137.8	100		
8	2	10 mM Glycina nH 20	0.50	20	11506.8	2.6	2		
8	2	anti-traneferrin	10.00	20	116/11.0	136.8	100		
8	2	10 mM Glycine nH 20	0.50	20	11509.5	5.2	4		
8	2	anti-transferrin	2.00	20	115/2.0	37.7	100		
6	2	10 mM Glycine nH 20	0.50	20	11509.0	48	13		

The table shows the analyte remaining on the surface after each injection in terms of RU and percentage. The percentage is reset to 100% each time new analyte is injected. The baseline level (0%) is initially set to the response before the first analyte injection, and is set to a new level only if the response before an analyte injection is lower than the previous baseline (i.e. the *Remaining Analyte* value is negative).

Regeneration scouting in practice

The recommendations below can help you to get the best results from the regeneration scouting wizard:

- Use purified analyte if possible, to minimize complications from nonspecific binding of sample components to the surface.
- Inject analyte at the highest concentration you intend to use in analyses. Assessment of regeneration levels is more reliable with higher levels of bound analyte.
- Prepare the analyte in the buffer you intend to use for analysis. In particular, avoid low ionic strength buffers that can enhance non-specific binding of analyte to the sensor surface.
- Test mild regeneration conditions first, and increase either contact time or the harshness of the conditions (e.g. more extreme pH, higher ionic strength etc) if the first trials are not adequate.

The scouting procedure should be regarded as a rough approach to finding regeneration conditions. Do not attempt to fine-tune regeneration using the scouting procedure: accumulation of analyte through repeated cycles of incomplete regeneration and injection of new analyte can make detailed interpretation difficult. Instead, once suggested conditions have been found using the scouting procedure, test and fine-tune them on a newly-prepared surface if possible.

When suitable regeneration conditions have been found, run the *Surface Performance Test* wizard to check the performance of the immobilized ligand through repeated cycles of binding and regeneration.

5.3.6 Surface performance test

A flow diagram for the Surface Performance Test wizard is shown in Figure 5-6.

Figure 5-6. Flow chart for the Surface performance test wizard component.

This wizard tests surface performance through repeated cycles of analyte binding and regeneration. The performance is assessed in terms of completeness of regeneration and of retention of analyte binding capacity.

Analyte and run settings

For the surface performance test, use binding conditions that are as close as possible to your analysis conditions. Run several cycles (at least 3, recommended 5) so that any trends in binding and regeneration levels are clear.

Regeneration conditions

Before running the surface performance test, regeneration conditions must be established. The wizard supports regeneration with one or two pulses of the same or different regeneration solutions as well as regeneration by dissociation in buffer (for interactions with rapid dissociation rates).

Presentation of results

The results from the surface performance test are shown as trend diagrams for level of analyte binding and baseline level after regeneration. Ideally, both values should be constant throughout the test cycles. Inadequate regeneration appears as an upward trend in the baseline level, while loss of surface binding capacity gives a downward trend in the response level. A drop in the baseline is normally not a problem provided that the response level remains constant (as in the illustration below).

5.3.7 Troubleshooting surface preparation

The *Aim for Immobilized Level* procedure will attempt to achieve the target immobilized level using the ligand solution you provide. If the procedure determines that the immobilization is not feasible, the surface will not be activated and may be used again.

Assessment of whether the immobilization can be carried out is made on the basis of the rate of binding during an injection over the unactivated surface (step 1 in the illustration in Section 5.3.3). If immobilization is judged to be feasible, the surface is activated and ligand is injected. The amount bound during ligand injection is used as an estimate of the amount that is actually

immobilized: if ligand binds without being covalently linked, this estimate may be misleading.

There are thus a number of situations where **Aim for Immobilized Level** may give unsatisfactory results. Suggested corrective measures are listed below. If none of these measures works, you may need to determine suitable conditions in independent pilot experiments and then use the Specify Flow Rate and Injection Time alternative in the surface preparation wizard.

In determining whether a ligand immobilization is satisfactory, remember that the level of immobilized ligand does not necessarily reflect the functional capacity of the surface. The important criterion is the analyte binding capacity (which can be estimated using the surface performance test wizard).

Immobilization not performed: ligand binding too fast • This situation arises if the shortest injection time for ligand is expected to overshoot the target level.

Try using a lower concentration of ligand. If this does not help, increase the pH of the immobilization buffer by 0.5 - 1 units. (If the pH used is below optimum for electrostatic preconcentration, this measure may actually increase the binding rate. If this behavior is seen, increase the pH further until the binding rate drops.)

Immobilization not performed: ligand binding too slow • This situation arises if ligand binding to the surface could not be detected in a test injection or is too slow to reach the target level within the maximum contact time.

Check the ligand solution:

- The pH should be 0.5 1 units below the isoelectric point of the ligand (or at a value determined to be optimum for electrostatic preconcentration of ligand on the surface).
- The ionic strength should be 10 mM or lower (beware of salt introduced by diluting a high ionic strength ligand stock solution into coupling buffer).
- The ligand concentration should typically be 5-50 µg/ml for high immobilization levels or 2-20 µg/ml for low levels. Higher concentrations may be required in cases where the preconcentration efficiency is low.
- Immobilization performed but target level not reached • This situation can arise if ligand binds to the surface during injection but is removed by the pulse of ethanolamine (i.e. is not covalently linked), or if the immobilization process is terminated before the target level has been reached.

Make sure you use fresh NHS and EDC solutions.

The amount of ligand solution that can be injected is limited by the capacity of the sample loop. If this is not sufficient to achieve the target level, try optimizing the immobilization pH or increasing the ligand concentration.

The ligand may bind electrostatically to the surface (Response 1 acceptable) but not be covalently linked (Response 2 low) in spite of fresh NHS and EDC solutions. Alternative immobilization chemistry or capturing may be more appropriate.

• Immobilization performed but target level exceeded This situation can arise if immobilization of ligand proceeds significantly faster than the electrostatic binding used to estimate the required injection time. In a case like this, **Aim for Immobilized Level** is not suitable: use **Specify Flow Rate and Injection Time** instead.

5.4 The analyte recovery wizard

5.4.1 Analyte recovery wizard functions

The analyte recovery wizard provides support for recovering analyte that is bound to ligand on the sensor surface. Several options are available:

- Use 1-4 standard flow cells in the IFC.
- Use the single large area flow cell configuration (SP_2) of the Surface Prep unit.
- Collect recovered analyte into a standard vial.
- Deposit recovered material onto a MALDI target (supplied by the user) for direct mass spectrometry applications.
- **Note:** The Surface Prep unit provides the maximum surface capacity for analyte recovery, but no SPR detection is available. It is generally recommended therefore that run conditions are established using the IFC prior to scaling up the experiment to the Surface Prep unit. If the Surface Prep unit is used, a dummy sensor chip must also be docked in the instrument in order for the procedure to be run.

A flow diagram for the analyte recovery wizard is shown in Figure 5-7.

5 Application Wizards

5.4 The analyte recovery wizard

Figure 5-7. Flow chart for the analyte recovery wizard.

5.4.2 Using the analyte recovery wizard

Setup

The basic options of where to perform the analyte recovery experiment and to where the recovered analyte should be collected are chosen by clicking the appropriate radio buttons in the *Setup* dialog box:

🖙 Analyte Recovery - Setup	×
Perform Experiment In	
€ FO	
C Surface Prep Unit	
Collect Recovered Sample	
⊙ In⊻ial	
On MALDI target	
Help < Back Next > Close	

Note: If the **Surface Prep Unit** and/or **On MALDI target** options are selected, remember that the Surface Prep unit and MALDI holder must be placed in the appropriate autosampler rack positions (see Section 4.2.4). The software-supported MALDI target type required (see Appendix H for details) is selected from the drop-down menu.

Setting parameters for analyte recovery in the IFC

If the *IFC* radio button option is selected, the following dialog box is displayed after clicking on *Next:*

🖙 Analyte Recovery - IFC Parameters 🛛 🗙
- Inject Settings
Flow <u>C</u> ell: 1, 2, 3
Elow Rate: 5 (µl/min)
Sample Injection Time: 5 (min)
_ Wash Settings
Sensor Chip Wash Solution: 50 mM NH4HCO3 ▼
Flow System Wash Solution 1: 50 mM NaOH
Flow System Wash Solution 2: 2% Acetic acid
Recovery Settings
Incubation <u>T</u> ime: 30 (s)
Becovery Solution: 0.5 % TFA
Add Reagent to Recovered Analyte
Reagent Solution: HCCA
Reagent ⊻olume: 1 (µl)
Wash Needle with Solution: acteone
Help < Back Next > Close

Select the flow cell(s) to be used, the sample flow rate and the injection time. The *Wash Settings* drop-down menus are used to select a series of wash solutions that are used to wash the flow system in order to prevent carry-over of material from the injected sample to the recovered analyte. *Flow System Wash Solution* **1** & **2** may be mildly acidic or basic solutions, and are used to wash the flow system including the IFC, but not the flow cells. The *Sensor Chip Wash Solution*

is used to equilibrate the IFC prior to recovery of analyte and to wash the flow cell area directly after sample injection, prior to sample recovery.

Select a solution to remove bound analyte from the sensor surface using the *Recovery solution* drop-down menu. The length of the recovery period is entered in the *Incubation time* field (typically of the order of 30 sec).

Check the **Add Reagent to Recovered Analyte** box to select a reagent to be added to the analyte after recovery. For MS applications, this reagent may typically be a matrix solution for deposition onto a MALDI target, or an enzyme solution for proteolytic digestion. The **Reagent Solution** is selected using the drop-down menu and the volume (1-10 μ I) is entered in the **Reagent Volume** field. Check the **Wash Needle with Solution** box and select a solution from the drop-down menu (if required) to remove traces of the added reagent from the needle.

Setting parameters for analyte recovery in the Surface Prep unit

If the *Surface Prep* radio button option is selected in the *Analyte Recovery Setup* dialogue box, the following dialog box is displayed after clicking on *Next*:

📰 Analyte Recovery -	Surface Prep Parameters	×
- Inject Settings		
Elow Rate:	20 (μl/min)	
Sample Injection Time:	10 (min)	
-Wash Settings		
Sensor Chip <u>W</u> ash Solu	ition: 50 mM NH4HCO3, 2 mM CaCl2 💽]
Recovery Settings		
Incubation <u>T</u> ime:	30 (s)	
<u>R</u> ecovery Solution:	0.5% TFA]
🗖 🗖 🖾 🗖 🗖 🗖 🗖	covered Analyte	
Reagent Solution:	MALDI matrix]
Reagent <u>V</u> olume:	1 (μ)	
☐ Wash N <u>e</u> edle with 9	Solution: acteone]
Help	< <u>B</u> ack <u>N</u> ext > Close	

The *Surface Prep Parameters* dialog box is similar to the IFC Parameters dialog box, except that:

There is no flow cell selection (single large-area flow cell).

Only one wash solution is selected, in the **Sensor Chip Wash Solution** field, and this is injected in the flow cell: Carry-over is minimized in the Surface Prep unit due to the relatively much shorter injection and recovery flow paths compared to using the IFC.

Entering samples

After all required parameters have been entered in the *IFC Parameters* or *Surface Prep Parameters* dialog box, click on *Next* to proceed to the *Samples* dialog box:

F P	inalyte Recovery - Samples	×
	Sample Name	Repl.
1	brain extract 1	1
2	brain extract 2	2
3	brain extract 3	1
4	brain extract 4	1
5	brain extract 5	1
6	brain extract 6	1
7	brain extract 7	1
8	brain extract 8	1
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		-
20		
	Help < <u>B</u> ack <u>N</u> ext > (Close

Enter the sample name and number of replicate cycles in each row as required. If two or more replicates are entered in the *Repl* column, the multiple cycles of recovered analyte are placed into the same vial or MALDI target position. If the same sample name is entered in multiple rows in the *Sample Name* column, however, the analyte is placed into a different vial or MALDI target position after each recovery cycle. The maximum number of analyte recovery cycles (*i.e.*, samples x replicates) is limited to 20.

Rack positions

After filling in all sample data, click on **Next** to continue to the **Rack Positions** dialog box. This is essentially the same as for the other wizards, but note that the rack type selection lists may be locked, depending on the options selected in the **Setup** dialog box. If the experiment is performed in the Surface Prep unit, the right-hand rack type is set to **SP_2** and when analyte is recovered on to a MALDI target, the left-hand rack is set to **MALDI**. Analyte recovery destinations are indicated by empty positions with **Content** indicated in the form of **Recovered_sample name**.

	Analyte	Recovery - Ra	ack Positions			×
Po	sition	Min Vol (µl)		Con	tent	
R1	A1	Empty	Recovered sa	imple 1		
R1	A2	Empty	Recovered sa	mple 2		
R1	A3	Empty	Recovered sa	imple 3		
R1	A4	Empty	Recovered sa	imple 4		
R1	A5	Empty	Recovered sa	mple 5		
R1	A6	Empty	Recovered sa	mple 6		_
	MAL	DI 🔽	REAG_A	-	THERMO_A	
	Help	<u>M</u> enu		< <u>B</u> ack	Save <u>A</u> s <u>C</u> lose	

Presentation of results

For analyte recovery runs made in the IFC, results are presented in a tabbed dialog box with separate tabs for *Recovered Analyte, Baseline Level* and *Recovery Log.*

Recovered Analyte Presents the amount of analyte recovered (in RU) plotted against cycle number. The recovered analyte is calculated as the difference between the binding and post-recovery responses.

Baseline Level

Presents a baseline stability plot of the response immediately prior to sample injection against cycle number.

Recovery Log Presents a run log that lists the source and target rack positions, along with the sample used for each cycle.

🖬 analyte recovery 030212 - Results	×
Sample Source Position Target Position	<u>C</u> lose
extract1 B1A1 B1C1	Help
extract2 H1A2 H1L2 extract3 B1A3 B1C3	
extract4 R1A4 R1C4	Print
extract5 R1A5 R1C5	
extract7 B1A7 B1C7	

For analyte recovery runs made in the Surface Prep unit, no SPR detection is possible. In this case, the *Results* tabbed dialog box has separate tabs for *Run Log* and *Recovery Log*. Selecting *Recovery Log* displays information about the sample name and recovery from/to rack positions for each cycle:

5.5 The binding analysis wizard

osja03)211Analyterec	overyMSP_Mvial3075 - Results	×
Sample	Source Position	Target Position	<u>C</u> lose
CaM1	BB1	R1C1	Help
CaM2	BB1	R1C1	
CaM3	BB1	BICI	Print
CaM5	BB1	R1C1	
Recovery	Log Run Log		J

For detailed information on methodological issues connected with analyte recovery and associated mass spectrometry applications, please contact your GE Healthcare representative.

5.5 The binding analysis wizard

The binding analysis wizard provides support for determining the extent of binding of up to four consecutive analytes to an immobilized ligand, in multiple cycles that can use the same or different analytes. The results are presented as bar charts of binding levels. This wizard is intended in the first place for yes/no binding tests and rough assessment of the extent of binding (which may provide ranking information for binding affinities or information on relative concentrations, depending on how the analyte samples are prepared).

🐨 990309-5.blr - Injections 🔹 😢
Settings
Use <u>F</u> low Cell(s): 1
Flow <u>R</u> ate: 20 (μl/min)
Number of Sample Injections: 4
First Ab
Injection Time: 3 (min) Wait After Injection: 2.5 (min)
⊿ Antigen
Injection Time: 3 (min) Wait After Injection: 2.5 (min)
Blocker
Injection Time: 3 (min) Wait After Injection: 2.5 (min)
Second Ab
Injection Time: 🖉 (min) Wait After Injection: 2.5 (min)
Help < <u>Back</u> Next> Close

Choose the number of injections and the conditions for each injection in the *Injections* dialog box. You can set the name of the analyte(s) by clicking on the small square at the top left of the panel for each analyte (the names in the example above are set to *First Ab, Antigen, Blocker* and *Second Ab*, as might be used for example in an epitope mapping experiment).

Analyte injections are performed in direct succession, with no regeneration between samples. In practice, there is a minimum delay of about 2.5 minutes between injections, corresponding to the autosampler preparation time for INJECT commands (see Section 4.4.6). The *Wait After Injection* box allows you to specify delay periods longer than 2.5 minutes.

The injection conditions specified in the *Injections* dialog box apply to all cycles in the binding analysis run. Details of the analytes for each cycle are specified in the next dialog box:

🖙 990309-5.blr - Cycles					?	×		
Bun Order: As Entered								
	Repl.	First Ab	Antigen	Blocker	Second Ab			
1	1	Mab 22F.9	Myoglobin	Anti-P24	Mab 43.2			
2	1	Mab 22F.9	Myoglobin	Anti-P24	Mab 14.5			
3	1	Mab 22F.9	Myoglobin	Anti-P24	Mab 26G.1			
4	1	Mab 43.2	Myoglobin	Anti-P24	Mab14.5			
5	1	Mab 43.2	Myoglobin	Anti-P24	Mab 26G.1			
6	1	Mab 43.2	Myoglobin	Anti-P24	Mab 43.2			
7								
8								
9						┳		

Each line in the **Cycles** table represents one analysis cycle (with the number of replicates specified in the *Repl* column). Different cycles may use the same or different analytes.

Regeneration is performed after the last injection in each cycle.

Presentation of results

The results of binding analysis are presented as bar charts of response levels, grouped either by analyte or by cycle.

5.5 The binding analysis wizard

Response levels are recorded at the following preset points in each injection (shown for two injections in the illustration):

injection. The *Regeneration* response is calculated relative to *Baseline*.

Note: For curves which are not reference-subtracted, the response at **Resp2** will include the bulk refractive index contribution from the injected sample.

You select which response levels to display in the **Cycles** and **Injections** dialogs. Injections are identified as 1st, 2nd, 3rd and 4th, with the sample name in the **Injections** list for additional identification. Holding the mouse pointer over a histogram bar shows a tool tip which gives full details of the injection for that sample.

You can display results grouped by injections (for ease of comparing corresponding injections between cycles) or by cycles (for ease of comparing corresponding cycles for the same injection) by selecting the appropriate tab in the display window. The **Baseline stability** tab shows trends in the baseline response (at the beginning of each cycle) as a function of cycle number.

5.6 The kinetic analysis wizard

5.6.1 Kinetic analysis wizard functions

The kinetic analysis wizard provides support for:

- Analysis using covalently immobilized or non-covalently captured ligand.
- Determination of kinetic parameters from analyte concentration series. Apparent kinetic constants based on a simple 1:1 binding model are calculated and presented automatically.
- Control experiment to reveal mass transfer limitations based on dependence of binding on flow rate.
- Control experiment to reveal linked reactions or kinetic heterogeneity based on the dependence of dissociation rate on incubation time at steady state.

A flow diagram for the kinetic analysis wizard is shown in Figure 5-8.

The kinetic analysis wizard may be used with any type of sensor chip that supports direct immobilization or capturing of ligand. The sensor chip type is not specified in the settings.

5 Application Wizards

5.6 The kinetic analysis wizard

Figure 5-8. Flow chart for the kinetic analysis wizard.

When you start the kinetic analysis wizard, you can choose to run any or all of the concentration series and control experiments in a single "batch" run. Check the experiments you wish to perform.
🔤 Kinetics - Analysis Ste	ps		×
Kinetic Analysis <u>S</u> teps:			
Concentration Series			
Control Experiments			
Mass I ranster			
Linked Reactions			
Performs analysis with a series	of analyte con	centrations to de	etermine kinetic
parameters.			
Help	< <u>B</u> ack	<u>N</u> ext >	Close

As a recommendation, run the concentration series first without checking any control experiments. When the analysis is finished, click **Next** in the result display (see below) without closing the wizard, and run the control experiments. If you work this way, the application wizard will use the results of the concentration series to suggest analyte concentrations for the control experiments.

If you choose to run both the concentration series and control experiments in a single batch, or if you close the wizard between completing the concentration series and running the control experiments, the wizard will not be able to suggest analyte concentrations for the controls and you must provide these values yourself. Note that if you have not analyzed the interaction previously you may not be able to choose suitable concentrations for the control experiments. Concentrations should be chosen as follows:

- for the mass transfer control experiment, the rate of binding should be such that a readily measurable response is obtained with an injection time of 2 minutes. If the binding is too fast or too slow, the results may be difficult to interpret. As a rule of thumb, the response reached after 2 minutes should be less than 50% of the maximum analyte binding capacity of the surface.
- for the linked reactions control, the binding should ideally approach steady state within 1-2 minutes. Frequently this means using the highest analyte concentration available. If the binding does not reach steady state, comparison of the dissociation phases can be misleading.

Running several analytes in one run

You can enter several different analytes in the sample table for the kinetic analysis wizard:

ing th	🖙 thrombinkin2.blr - Concentration Series								
<u>U</u> se	Flow Cell(s): 2, Using	1 as referenc	e:			•		
<u>F</u> low Rate: 30 (μl/min)				<u>S</u> tab	Stabilization Time: 10 (mir				
Injec	tion <u>T</u> ime:	2	(min)	Dissociation Time: 10 (min)					
Run Order: Sorted - Low to High									
	Analyte Name			MW	Repl.	Concer	ntration		
				(Daltor)	(nM) 💌	(µg/ml) 💌		
8	Throm	Thrombin inhibitor) 2	391e-3	156e-6		
9	Throm	bin inhibito	,	40) 2	196e-3	78.4e-6		
10	Throm	bin inhibito		40) 2	0	0		
11	Hirudin			600) 2	160	960e-3		
12	Hirudin	Hirudin) 2	80	480e-3		
13	Hirudin			600) 2	40	240e-3		
14 Hirudin				600) 2	20	120e-3	-	
					< <u>B</u> ack	<u>N</u> ext>	Close		

Note however that the same regeneration conditions will be used for all cycles in the same run. If you want to use different regeneration conditions for different analytes, run the analytes in separate sessions.

5.6.2 Notes on the kinetic analysis wizard

Choice of analysis principle

The kinetic analysis wizard supports analysis using either directly immobilized or captured ligand. This choice is usually dictated by the requirements of the analysis.

Choice of flow cells

You should if possible run kinetic analysis using on-line subtraction of a reference flow cell. This will make interpretation of the results easier by eliminating response contributions such as bulk refractive index in the samples. Ideally, the reference flow cell should be prepared by immobilizing an irrelevant (non-binding) protein to the same level as the ligand, to compensate for any adverse effects that might arise from the presence of protein on the surface. These effects are small if any, but can be significant in very careful kinetic analyses using low response levels. If no suitable irrelevant protein is available, you can use a blank reference flow cell.

Concentration series

When entering details of the concentration series, it is most convenient to enter the highest analyte concentration first. The wizard will automatically suggest values for the next cell row when you press *Enter* to complete an entry, in accordance with the descriptions below. You can change any suggested entry simply by typing a new value:

- the analyte name is copied from the row above
- the analyte molecular weight is copied from the row above: for analyte names which have been used recently, the previously used molecular weight is suggested
- the number of replicates is copied from the row above
- the concentration is calculated from the row above, by multiplying by 0.5 for the second row or by the ratio of the two preceding rows for subsequent rows. This makes it easy to enter a regular dilution series. The factor is reset to 0.5 when the analyte name is changed.

🐨 Kinetics - Concentration Series								
Use Flow Cell(s): 1								
<u>F</u> low I	Rate:	30	(µl/min)	<u>S</u> tabili:	ation Tir	ne: 0	(min)	
Inject	ion <u>T</u> ime:	3	(min)	<u>D</u> issoc	iation Tir	me: 15	(min)	
Run Order: Random								
Analyte Name			MW	Repl.	Concer	Concentration		
				(Dalton)		(nM) 💌	(µg/ml) 💌	
1	p24			24000	2	120	2.88	
2	p24			24000	2	60	1.44	
3	p24			24000	2	30	720e-3	
4	p24			24000	2	20	480e-3	1
5	p24			24000	2	13.33	320e-3	1
								-
Help Close Close								

As a recommendation, you should always run at least 5 different analyte concentrations, with at least one of the concentrations in replicate. The software will advise you if these conditions are not fulfilled when you click on *Next* to continue with the wizard.

It is also advisable to include a sample with zero analyte concentration (this means an injection of analyte buffer). Ideally, this should be a straight baseline after subtraction of the reference response: however, inclusion of such a sample in the concentration series can facilitate assessment of baseline deviations in the final data.

Conditions for analysis and control experiments

For control experiments to be valid, it is important that the concentration series and controls are performed under identical conditions (sample preparation, buffer, age of sample etc). The best way to achieve this is to run the controls directly after the concentration series without closing the wizard window: the wizard will then suggest suitable conditions for each control. If the controls are run on a separate occasion, make sure:

- that the same sensor chip is used as for the concentration series, and that the ligand activity has not deteriorated
- that the analysis principle and regeneration conditions are the same as those used in the concentration series (the correct values will be suggested if you open the wizard template from the result file, see Section 5.1).

5.6.3 Interpreting results from the kinetic analysis wizard

Results from the kinetic analysis wizard are presented in a tabbed dialog box with separated tabs for the concentration series and control experiments. If more than one analyte has been run, the analyte can be selected from the pulldown list at the top of the display:

Note: If you run the concentration series and control experiments in separate wizard sessions (closing the wizard dialog box between runs), the results of each session will be saved in separate files. The tabs in the wizard result presentation represent experiments run within the same wizard session.

Concentration series

The results from the concentration series are shown as an overlay plot with the sensorgrams aligned at the time of injection and the baseline adjusted to zero before injection. The results are evaluated according to a simple 1:1 interaction model; experimental curves are shown in red and fitted curves in blue. Apparent kinetic constants according to the 1:1 fitting are listed, together with the estimated maximum analyte binding capacity (R_{max}).

It is important to realize that the kinetic constants reported in the wizard results are derived from the evaluation according to the simplest possible evaluation model, and are consequently apparent constants which may deviate significantly from the true constants for the interaction. More careful evaluation of the kinetic data using BIAevaluation software is always recommended, particularly if the experimental and fitted curves do not coincide in the wizard result window.

The evaluation reported in the wizard results is performed using the actual injection times for start and stop of the association phase, and uses all data in the sensorgrams. If the data is evaluated with BIAevaluation software where parts of the sensorgrams may be excluded from analysis, significant differences in kinetic values may be obtained even if the same interaction model is applied.

Baseline stability

The **Baseline Level** tab displays the baseline response ten seconds before the sample injection as a function of cycle number. If a capture injection is used, the baseline response is therefore taken in between the capture and sample injections. Results are presented separately for the flow cells used in the analysis (accessed from the pull-down list), and for the reference-subtracted signal if an in-line reference cell is used. All cycles are presented, including any control experiments: the values are not distinguished according to analyte when the run uses several analytes.

This presentation helps you to assess the regeneration performance during the analysis. Note that the scale of the presentation may give a false visual impression of the baseline stability: in the example here, the baseline changes by about 40 RU over 50 cycles, or less than 1 RU per cycle.

Mass transfer control experiment

The mass transfer control experiment analyses one concentration of analyte at three different flow rates (5, 15 and 75 μ l/min), using a 2 minute injection. If the interaction rate is limited by mass transfer, the observed binding rate will vary with flow rate (kinetic interactions are independent of flow rate while mass transfer is proportional to the cube root of the flow rate). Thus if the association phase in the three curves presented in the mass transfer control results show significantly different slopes, mass transfer limitations cannot be ignored. The example below indicates negligible mass transfer limitation. See the on-line help for more examples.

If mass transfer limitations are serious, the apparent kinetic constants reported in the wizard result window may bear no relation to the kinetic constants for the interaction itself.

Note that if binding at the analyte concentration used is very fast or very slow, it may be difficult to decide whether the three curves show the same slope or not. If this is the case, repeat the control experiment using a more suitable analyte concentration.

If mass transfer limitations are apparent, either:

- repeat the analysis using a lower level of immobilized ligand to reduce the significance of mass transfer, or
- evaluate the results using a mass transfer-limited model in BIAevaluation software.

Linked reactions control

The linked reactions control experiment compares the dissociation rates for one analyte concentration after injection times of 1, 3 and 20 minutes. Ideally all

three sensorgrams should approach steady state binding. The design of this experiment is based on an interaction model of the type

where dissociation of AB* proceeds at a significantly different rate from dissociation of AB. Assuming that the rate of conversion of AB to AB* is such that the proportion of AB* changes between 1 and 20 minutes, this reaction scheme will give differently shaped dissociation profiles after different incubation times. The example below does not indicate linked reactions, since the dissociation phases are practically identical. See the on-line help for more examples.

Note that dissociation phases which coincide do not exclude an interaction mechanism of this type:

- if the dissociation rates of AB and AB* are similar, the differences in dissociation profiles will be very small
- if the conversion AB to AB* is essentially complete within 1 minute, all three curves will reflect dissociation of only AB*.

If the interaction does not approach steady state in all three sensorgrams, interpretation of the results is more complicated, and other deviations from the 1:1 interaction model (e.g. mass transfer limitations) can give rise to differences in the dissociation profiles.

5 Application Wizards5.6 The kinetic analysis wizard

6 Customized applications

Customized applications can be set up with the help of the Customized Application Wizard. Unlike the other application wizards, this does not provide assistance for running a specific application. Instead, the application is defined in terms of a freely constructed command sequence. The wizard then guides you in setting up samples and reagents in the autosampler rack and in starting the run, using the same kind of dialog boxes as in the other application wizards (Section 5.1.3).

The customized application wizard will handle most experimental requirements that are not covered by the other application-specific wizards. For complete control of instrument operation, however, the Method Definition Language (MDL) is a programming environment that offers a greater degree of flexibility than the customized application wizard. MDL is documented in Appendices E and F in this manual.

Commands in the customized application wizard provide support for:

- Standard instrument functions such as detection mode, transfer, mix, inject and report point
- Variable command parameters that may be assigned different values for different cycles in the analysis
- Conditional ("if-then") commands that control instrument operation on the basis of variables or report point values

6.1 Overview of the customized application wizard

Figure 6-1. Flow chart for the customized application wizard

6.1 Overview of the customized application wizard

6.1.1 Defining the command sequence

Starting the customized application wizard opens a window where you define the sequence of commands that constitute one cycle in the application:

Customized - Sequence
彩 🖻 ぞ 🖹 🖉 🔁 🖉 🕺 🕺 😫
FLOW 10
TRANSFER "NHS" NHS_EDC 100
TRANSFER "EDC" NHS_EDC 100
MIX NHS_EDC AutoMix parameters
F-10 BASELINE Before_activation 5
INJECT NHS_EDC 70
INJECT END
INJECT Ligand 70
INJECT END
INJECT "Ethanolamine" 30
INJECT END
10 RESPONSE Immobilized_level 5
<u>H</u> elp <u>M</u> enu ▼ <u>< Back</u> <u>N</u> ext > Close

When first opened, the windows is empty except for a FLOW 20 command that sets the buffer flow to 20 μ /min at the beginning of the run. You can edit this command to change the flow rate, but you cannot delete it. The example shown above is a simple amine coupling sequence. The parameters **Detection** and **Ligand** (encircled in the illustration above, shown in blue text in the display) are variables which allow the immobilization sequence to be used for different ligands in different flow cells within a single run.

- To *add commands* to the end of the sequence, click on the toolbar button for the command you want to add. Alternatively you can choose the command from the *Menu* button, or right-click in the window area and choose the command from the context menu. Short-cut key combinations for the commands are listed in the menus. Adding a command opens a dialog box where you set parameters for the command.
- To *insert a command* in an existing sequence, select the command immediately after the insertion point and follow the procedure for adding a command.
- To *edit a command*, double-click on the command. This will open the dialog box for the command parameters.
- To *delete a command*, select the command and press Del on the keyboard.

 To move a command, select the command and drag it to the new position. Conditional commands cannot be moved, and there are restrictions on how you can move certain other commands (e.g. there must always be a FLOW command as the first instrument operation at the beginning of the sequence).

Command sequence display

Commands in the sequence are presented as an icon and a specification. The specification is based on the MDL syntax (Appendix F), with some adaptations for customized command display. Some command keywords have been adapted to make it easier to understand the command functions: for example report points are identified as **BASELINE** or **RESPONSE** depending on whether the report point defines a baseline or not. See the on-line help for details of the display syntax.

Command parameters may be constant or variable (see Section 6.2). Constant parameters are shown in the window in black text inside quotation marks. Variable parameters are shown in blue text. There is also a special kind of variable representing empty vials for mixing positions, shown in green text.

Report points are set in relation to other commands (at a specified time before or after), and are "tied" in the display to the respective command with a vertical line. Report points move with a command when the command is moved, and are deleted if the command is deleted.

The INJECT command is always displayed together with a corresponding INJECT END. This has no operational function, but allows report points to be set in relation to the end of a sample injection without having to calculate the contact time represented by the injection.

6.1.2 Assigning values to variables

When you have defined the sequence of commands, click on *Next* to go to the *Cycles* dialog box:

6.1 Overview of the customized application wizard

🗔 C	ustomiz	ed - Cycles		? ×
<u>R</u> un	Order:	As Entered	J I Use Separate Vials for Different Solution Variables	
	Repl.	Detection	Ligand)	
1	1	Fc1	Anti-myoglobin 22.9F	
2	1	Fc2	Anti-myoglobin 3C43 variable name	
3	1	Fc3	Anti-p24	
4	1	Fc4	BSA	
5				
6			position names	
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
	<u>H</u> elp]	< <u>₿</u> ack <u>Next</u> ≻ Clos	e

Here you set the number of replicate runs for each cycle and values for any variables used in the command sequence (variables allow you to run multiple cycles using the same sequence of commands). You can also choose whether the cycles will be run in random order or in the order entered in the table.

The table in this dialog box contains one column for the number of replicates and one for each variable used in the command sequence. The example here defines four cycles, to immobilize four different ligands in flow cells 1-4 respectively.

If you want to change the order in which the columns are displayed, click on the *Menu* button and select *Set column order*. You cannot change the order for the *Repl* and *Detection* columns.

If the option **Use Separate Vials for Different Solution Variables** is checked, entries that have the same values in different variable columns will use separate vials in the autosampler rack (entries with the same value within one column use the same vial). If this option is not checked, entries with the same value in different columns will be mapped to the same vial position.

Check the **Use Separate Vials for Different Solution Variables** box if you want to use position names that might not uniquely identify a sample, for example if you use the sample name as the variable name and a concentration as the position name in the table. Uncheck the box if you use the same solution in different contexts in an analysis, such as epitope mapping where the same antibodies may be used as first or second antibodies, illustrated in the following example. For an application with two injections using variables **Primary_Ab** and **Secondary_Ab**, the table

🖼 Customized - Cycles							
<u>B</u> un	Order:	As Entered 💌	🔽 Use Separate Vi	als for Different Solution Variables			
	Repl.	Primary_Ab		Secondary_Ab			
1	1	Mab-123		Mab-456			
2	1	Mab-456		Mab-123			
3							
4							

with **Use Separate Vials for Different Solution Variables** checked will give four samples in the **Rack Positions** dialog:

Position	Vol. (µl)	Content	
R1 A1	105	Primary_Ab - Mab-456	
R1 A2	105	Secondary_Ab - Mab-123	1
R1 D1	105	Primary_Ab - Mab-123	
R1 D2	105	Secondary_Ab - Mab-456	
			-

However, with Use Separate Vials for Different Solution Variables not checked:

🐨 Customized - Cycles						
Bun Order: As Entered 🗾 🔽 Use Separate Vials for Different Solution Variables						
	Repl.	Primary_Ab	Secondary_Ab			
1	1	Mab-123	Mab-456			
2	1	Mab-456	Mab-123			
3						
4						

only two sample positions are generated since the variable names *Mab-123* and *Mab-456* each map to the same position regardless of the variable column in which they are used.

6.1.3 Assigning rack positions

When values have been assigned to all variables, click on *Next* to go to the *Rack Positions* dialog box. See Section 5.1.3 for a description of this dialog box.

6.1.4 Preparing the run

Click on *Next* in the *Rack positions* dialog box to go to the *Prepare run* summary. This dialog summarizes the solutions and vial positions required in the autosampler (see Section 5.1.3). In some cases (if you have used *TRANSFER* commands in your sequence) empty vials will be needed in some autosampler positions.

Note: In some circumstances, particularly in sequences involving conditional commands, the required volume of solution cannot be accurately determined in advance. The volumes shown in the **Prepare run** dialog box are "worst-case" volumes, calculated as though all commands are executed in all cycles.

6.2 Constant and variable command parameters

6.2 Constant and variable command parameters

The customized application wizard allows you to use either constant or variable parameters for most of the commands in the sequence:

• Use a constant parameter if the value is the same in every cycle of an analysis. For example, if you are going to inject the same volume of sample in each cycle, you would use a constant value for the sample volume.

Most constant parameters are entered as straightforward values (e.g. "20" for a sample volume of 20 μ l). Values that correspond to positions in the autosampler rack, however (such as sample identification for an INJECT command) are entered as a name, which is associated with a rack position in the **Rack Positions** dialog box later in the wizard.

• Use a variable parameter (check *Vary by Cycle*) if you want to vary the value between cycles. For example, if you are running a screening application and want to inject a different sample in each cycle, use a variable for the sample identification. You set the number of cycles and assign a value to the variables for each cycle in the *Cycles* dialog box later in the wizard.

In general, use variable parameters as sparingly as possible. Since variables are assigned a value for each cycle in the analysis, you will create a lot of data entry work if you use variables unnecessarily.

Note: The **To** position for TRANSFER is represented by a special kind of variable which creates a new empty vial for each cycle in a run (the primary use of TRANSFER is to prepare mixed samples for injection, and this feature prevents you from preparing a fresh mixture in a used sample vial). The empty vial variable does not appear in the **Cycles** table, since positions are assigned automatically. You do not need to check **Vary by Cycle** in dialog boxes for commands like INJECT in order to address this kind of variable.

6.3 Customized application commands

Commands supported in the customized application wizard are all accessible from the toolbar. Most of the commands have clear counterparts in the manual operation menus (see Chapters 4 and 9).

Cycle settings	Sets th mode	e temperature at the flow cell and the detection for the current cycle.			
	Note:	Setting the detection mode also sets the flow path. See Section 6.4 for hints on using the detection mode to best advantage.			

	Keywords	Defines keywords that will appear in the report point table for the run. You set the keyword value as a variable: the value of the variable for each cycle will appear in the keyword column in the report point table (see Section 6.5).				
<u>7</u>	Flow	Sets the flow rate.				
		Note: When you create a new sequence, a single FLO command that sets the flow rate to 20 µl/min automatically inserted at the beginning of the sequence. You can change the parameters for this command, but you cannot delete it and you cannot place other commands except cycle settings and KEYWORD before the first FLOW. Th ensures that the flow rate is set before any oth commands are executed in an analysis.				
i da	Flow path	Sets the flow path.				
× K	Inject	Injects sample over the sensor surface.				
	Report point	Sets report points at a fixed time relative to a chosen command.				
	Transfer	Transfers solution from one autosampler vial to another, or from the buffer reservoir to a vial.				
ð	Mix	Mixes the contents of a specified vial.				
N	Wash	Washes either the autosampler needle or the IFC channels.				
X	Wait	Inserts a delay period between commands.				
!	Comment	Inserts a comment in the command sequence, for documentary purposes. Comments do not affect execution of the commands in the sequence.				
	Conditional commands (if-then)	Allows conditional execution of commands or termination of the cycle or run, depending on the value of a report point or variable.				

The sections below offer some hints on how to construct applications using the commands in the customized application wizard. For more detailed descriptions of the commands themselves, see the on-line help.

6.4 Using detection mode and flow path

6.4.1 Detection mode

The DETECTION command in *Cycle settings* sets both the detection mode and the flow path. The detection mode can be set to a constant value in terms of flow cells and reference subtraction options, chosen from the pull-down list or to a variable named *Detection*. (This variable name is predefined and cannot be changed.)

Setting the detection mode to a variable allows you to change detection mode and corresponding flow path between cycles in a run. The example illustrated in Section 6.11 shows how this can be used to address a different flow cell in each cycle. Note that the detection mode determines both the initial flow path and the number of sensorgram curves displayed.

If your customized command sequence does not include a *DETECTION* command, you will be asked to set the detection mode at the beginning of the run. You can only choose a detection mode that is compatible with the commands in the command sequence. For example, if your sequence includes a *FLOW PATH 3* command, you can only choose a detection mode that includes Fc3.

6.4.2 Flow path

The *FLOW PATH* command allows you to change the flow path within the limitations set by the detection mode. For example, if the detection mode is set to Fc1-2, you can only choose flow cell 1 or 2 in the *FLOW PATH* command.

You cannot use a variable parameter with the FLOW PATH command, which means that you cannot use this command to change the flow path between cycles. Use *FLOW PATH* only if you want to change the flow path *within* a cycle. Use a variable detection mode if you want to change the flow path between cycles.

6.4.3 Flow cell names

Apart from the **DETECTION** command, you can refer to flow cells in **FLOW PATH** commands to direct the flow and in **IF-THEN** commands to set a condition based on the response in a specified flow cell.

If you have used a one- or two-channel detection mode, or if the detection mode is not specified, you can choose the logical flow cell names Sample, Reference, and **Subtracted** for **FLOW PATH** and **IF-THEN** commands. The table below lists the correspondence between logical flow cell names and actual flow cells for the different detection modes.

Detection mode	Sample	Reference	Subtracted
Fc1	Fc1	n/a	n/a
Fc2	Fc2	n/a	n/a
Fc3	Fc3	n/a	n/a
Fc4	Fc4	n/a	n/a
Fc1,2 Ref 2-1	Fc2	Fc1	Fc2-1
Fc3,4 Ref 4-3*	Fc4	Fc3	Fc3-4
Fc1,2	Fc1	n/a	n/a
Fc3,4	Fc3	n/a	n/a
Fc1,2,3,4	Fc1	n/a	n/a
Fc1,2,3,4 Ref 2-1, 4-3	Fc2	Fc1	Fc2-1
Fc1,2,3,4 Ref 2-1,3-1,4-1	Fc2	Fc1	Fc2-1

This option is particularly useful for *IF-THEN* commands, and allows you to set a condition based on a response without knowing in advance which flow cell is in use (see Section 6.11 for examples).

6.5 Using keywords

Keywords generate user-defined columns in the report point table for the run, with the keyword name as column heading. The name is defined as a variable in the customized sequence. The column content is the variable value for each cycle as entered in the **Cycles** table.

Command sequ <u>er</u>	се							
E KEYWOR Analy								
🚰 FLOW 20	7							
P-10 BASELINE E	lasaline 5							
🖌 L INJECT And	alyte 50							
	· /							
🖳 🖳 l 10 RESPONSE	bound 5							
		<u> </u>						
Cycles tab	le	$\mathbf{\mathbf{A}}$						
Repl.	\square	- Analyte	\rightarrow					
1 2	Protein	<u>A</u>						
2 2	Protein	<u></u>		<u> </u>				
3 2	BSA							
				_				
							<hr/>	
Rep	ort poi	nt table	e (for on	e cycl	e) 🗋	<u> </u>		\
Fc	APROG	Time	AbsResp	Slope	Baseline	RelResp	Jet (Analyte
1	Custom Custom	49.8 219.8	13256.2 21442.7	4.32 16.46	Yes No	0 8186,5	Baselin bound	Protein G Protein G

If you add keywords after entering the other commands in the sequence, the *Keyword value* field presents a pull-down list of all variables used in the commands, making it easy to select the appropriate variable name. The *KEYWORD* command itself is however always placed at the beginning of the sequence.

6.6 Using empty mixing vials

Applications that use the **TRANSFER** and **MIX** commands to prepare solutions in the autosampler vials generally require a new vial for every cycle, to avoid carryover effects between cycles. The dialog box for **TRANSFER** automatically handles this requirement:

Tr	ansfer	? ×
1	From & Solution: EDC Vary by Cycle C Buffer	OK Cancel
	Io: NHS_EDC (New vial for each cycle)	<u>H</u> elp
	Transfer ⊻olume: 100 [µl] [□ Vary by Cycle	
	Predip Needle: Predip Solution Predip Solution ✓ Vary by Cycle	

The **To** position generates a new empty vial for each cycle in the run (in this example for preparing fresh NHS/EDC for each cycle). The position name for the To position can be addressed for mixing, injecting etc but does not appear in the

Cycles table. Empty vial positions are assigned automatically for each cycle and are shown in green in the command sequence. The sequence below shows how *TRANSFER*, *MIX* and *INJECT* commands may be used to prepare and inject EDC/NHS:

Note: The first occurrence of the position name for a To position in the sequence must be in a **TRANSFER** command, since the position represents an initially empty vial. The wizard will not accept usage in any earlier command in the sequence.

6.7 Using MIX

The **MIX** command mixes the solution in a specified rack position (see Section 9.7).

If you check the **Automix** option, the wizard will determine the optimum mixing volume according to the volume of liquid currently in the vial. With this option unchecked, you specify the mixing volume in μ I (as a general guideline, this should be 75% of the volume of liquid in the vial).

6.8 Using report points

Report points are set at a fixed time before or after other commands. To set a report point, select the command to which the report point refers, then click on the **Report Point** button on the toolbar.

6.9 Using conditional commands

You can also set report points as isolated commands within an *IF-THEN* construction (see Section 6.9). To do this, enter an *IF-THEN* command using the command block alternative, select the *END IF* command and insert a report point.

6.9 Using conditional commands

Conditional commands allow you to control the sequence of commands that are actually executed depending on the outcome of the analysis. The basic structure of a conditional command is as follows:

IF condition THEN consequence END IF commands

If the condition is fulfilled, the commands represented by "consequence" are executed, followed by the commands after the **END IF** line. If the condition is not fulfilled, execution continues directly with the commands that follow **END IF**.

The condition is one of the following:

- **RelResp** Relative response for a specified report point on a specified sensorgram curve. The report point must be a *RESPONSE* set before the conditional command is inserted, and must be preceded by a *BASELINE* command from which to calculate a relative response.
- AbsResp Absolute response for a specified report point on a specified sensorgram curve. The report point must be set before the conditional command is inserted.
- **Slope** Slope for a specified report point on a specified sensorgram curve. The report point must be set before the conditional command is inserted.
- Variable The value for a specified variable (Detection and solution variables cannot be used in conditional commands). The variable must be defined before the conditional command is inserted.

If required, an additional condition can be added, with the logical operator **AND** (both conditions must be fulfilled) or **OR** (only one condition needs to be fulfilled).

The consequence may be one of the following:

Exit cycle	End the current cycle and continue with the next cycle.
Exit method	End the run, ignoring any cycles that may not have been performed.
Command block	A user-defined sequence of commands.
Command block ELSE Command block	Two command sequences separated by ELSE. In this construction, the first sequence is executed if the condition is fulfilled and the second if the condition is not fulfilled. In either case, execution then continues after the END IF line.

Editing, deleting and moving conditional commands

Because of the logical complexity that can be introduced by the use of conditional commands, there are some restrictions on how these commands can be handled in the customized command sequence:

- You cannot add conditional commands so that already existing commands are directly included in the conditional block. To place existing commands in a conditional block, add the conditional command first and then drag the other commands into the block.
- You cannot move a conditional command. You can however drag commands out of a conditional command. One way to effect a move is to enter a new conditional command in the required new position and drag any commands from the old condition to the new one.
- You cannot delete a conditional command without deleting the command block(s) included in it. To delete a conditional command but retain the included command(s), first drag the commands outside the condition and then delete the condition.
- Once you have entered a condition, you cannot change the type of consequence. If you want to change the consequence, enter a new conditional statement and delete the old one. Remember to drag any commands you want to keep out of the old condition before you delete it.

6.10 Using WAIT

The **WAIT** command inserts a delay period between commands in the sequence. The delay starts when the command preceding the **WAIT** (including setting any report points associated with the command) is completed, and ends when the next command (excluding any report points that are set before the command) is initiated. For **INJECT** operations, the start of the command is counted as the time when the operation actually begins, excluding any preparation time that might be needed. Note that **WAIT** command immediately preceding an **INJECT** command will have no effect if the delay period is shorter than the autosampler preparation time (see Section 4.4.6).

This is illustrated in the diagram below:

END INJECT		
WAIT		
(PREPARE INJECT)		

Figure 6-2. Diagram showing the time relationships of *WAIT* to other commands, using a *WAIT* between the end of one injection and the beginning of the next for illustration purposes. The arrow at the left indicates the duration of the delay specified in the *WAIT* command.

6.11 Customized application examples

This section shows some simple examples of how applications can appear in the customized application wizard. The examples should be seen as illustrations of the principles of customized sequences rather than as working experimental templates.

6.11.1 Inhibition assay

This example illustrates an inhibition assay for concentration determination of a low molecular weight analyte. The sequence mixes sample with a known amount of antibody and injects the mixture over a surface on which purified analyte is immobilized. The response measures the amount of free antibody remaining in the sample, and is inversely related to the amount of analyte.

The sequence does not include a **DETECTION** command, so that the detection mode and flow path are set at the beginning of each run. This allows the sequence to be used with a free choice of flow cell.

The keywords Sample and Conc ensure that responses recorded in the report point table are adequately identified for later evaluation. The variable Sample in the *KEYWORD* command is the same as that in the *INJECT* command: the variable Conc is used only as a keyword, to record concentrations in the report point table.

	KEYWORD Sample
	KEYWORD Conc
ē,	FLOW 20
1	Mix antibody and sample solutions
1	TRANSFER Sample Mix_ID 100
1	TRANSFER "Antibody" Mix_ID 100
ð	MIX Mix_ID AutoMix
1	Inject sample
p.	r-10 BASELINE Baseline 5
×	INJECT Mix_ID 50
À	
P	l 10 RESPONSE Response 5
t	Regenerate
<u>پې</u>	QUICKINJECT "Regeneration" 10
ÉND	QUICKINJECT END

6.11.2 Conditional regeneration

This example illustrates the use of an *IF-THEN* command to regenerate the surface only if analyte has bound. This kind of construction can considerably reduce the total time required for a series of analyses.

Note that the sequence does not contain a **DETECTION** command, allowing free choice of flow cell at the beginning of the run. Correspondingly, the **IF-THEN** command refers to the relative response in flow cell **Sample**, which will map to the appropriate flow cell according to the detection mode used in any given run (see Section 6.4).

6.11.3 Conditional control experiments

This example illustrates how IF-THEN commands can be used to check the activity of a surface if no analyte binding is observed. The sequence uses one *IF-THEN* command to check analyte binding in the sample injection: if the response is less than 20 RU, a positive control sample is injected. A second *IF-THEN* command (nested within the first) terminates the run if the positive control does not show any binding, since in that case the surface is inactive and there is no point in continuing with the analysis.

The positive control (and the subsequent conditional termination of the run) will be performed only if analyte binding from the sample is less than 20 RU.

7 Maintenance

For your own safety:

- Always wear gloves and protective clothing during operation and maintenance.
- Use required safety equipment when handling hazardous substances.
- If the instrument is contaminated with biohazards, please contact your GE Healthcare service representative for further information about decontamination procedures.

Regular maintenance procedures are described in this chapter. If more extensive maintenance or service of the instrument is required, please contact your GE Healthcare service representative.

7.1 Regular maintenance

Regular maintenance of Biacore 3000 is essential for reliable results. It is important to keep the instrument free from contamination such as microbial growth and adsorbed proteins in the liquid handling system. The BIAmaintenance Kit recommended for recommended Biacore 3000 includes all solutions (except 70% ethanol) required for maintenance and system tests.

Solutions in BIAmaintenance Kit

BIAdesorb solution 1	0.5% (w/v) SDS in water
BIAdesorb solution 2	50 mM glycine-NaOH pH 9.5
BIApreservation solution	0.25% (w/v) diazolidinyl urea, 0.005% Surfactant P20 in water
BIAdisinfectant solution	1% sodium hypochlorite
BIAnormalizing solution	70% (w/w) glycerol in deionized water
BIAtest solution	15% (w/w) sucrose in HBS-N buffer
HBS-N buffer	

All solutions are filtered through a 0.22 µm filter.

Note: If you prepare your own solutions for maintenance, be particularly careful about the concentrations of glycerol and sucrose in the solutions for normalization and system test respectively. Correct concentrations of these solutions are critical for the maintenance procedures.

7.1.1 At the end of the day

At the end of a day's work, run the **Standby** tool to keep buffer flowing at a low rate through the IFC. Do not leave the instrument overnight or longer with stationary buffer in the flow cells. The **Standby** tool may be appended to a method for automatic operation when the method finishes.

If you intend to run *Standby* for an extended period, make sure that there is sufficient buffer in the buffer pack. *Standby* will run for up to 4 days, which requires about 80 ml buffer. If the system is to be left for more than 4 days, run *Close* or *Shutdown* instead of *Standby* (see Section 7.2.1).

Replace the running buffer with water if your buffer tends to precipitate on standing. In this context, remember that the ambient temperature may drop during the night.

7.1.2 System cleaning

Removing adsorbed proteins

Inclusion of 0.005% Surfactant P20 to sample and running buffer is recommended to minimize non-specific adsorption of material to the pump tubing and IFC channels. Run the working tool **Desorb** to clean the tubing and IFC channels at least once a week, or more often if you do not use surfactant in sample and running buffer.

For some applications, a coating of protein on the tubing and IFC channel walls helps to give reproducible results, and the first few runs after **Desorb** may be unreliable. If you observe this behavior, run **Desorb** when you change your protein system rather than once a week.

The recommended cleaning agent for **Desorb** is BIAdesorb Solution (0.5% SDS) from BIAmaintenance Kit. If you wish to use other cleaning agents, consult the chemical resistance tables in Appendix C.

Removing salt residues

Many buffers, including HBS, use physiological salt concentrations (typically 150 mM NaCl). To prevent salt deposits accumulating in the liquid handling system, wash the connector block and the needle with deionized water once a week. (Wipe the outside of the needle with a wet tissue and run **Command:Wash** with selection **Needle** to wash the inside.)

Extensive cleaning of the fluidic system

A more extensive cleaning of all wetted parts within the fluidic system may be made using the *Superclean* service tool. This tool can be run if problems are suspected with the fluidic system.

Preventing microbial growth

To prevent microbial growth in the instrument, keep a high standard of hygiene in the solutions used. Store buffers frozen or in a refrigerator and filter through a $0.22 \ \mu m$ filter before use.

Run the working tool *Sanitize* at least once a month to remove microbial contaminants. For best results, run *Desorb* before *Sanitize*.

Note: The sensor chip surface may be damaged by the **Desorb** and **Sanitize** procedures. You may keep a special chip for running these tools, but you should not use it for any other purpose.

A scheduler will remind you that it is time to run the working tools *Sanitize* and/or *Desorb* when more than the recommended interval has elapsed since the respective maintenance tool was last used. You may choose to run the maintenance tool or ignore the reminder and run the tool at a later date. If you ignore the reminder, it will be repeated after one week.

- Remi	nder 🛛 🔀		
	Last run time for DESORB: 06-jul-98 Time elapsed since last DESORB: 4 weeks You are advised to run DESORB at least once a week.		
	Last run time for SANITIZE: 06-jul-98 Time elapsed since last SANITIZE: 4 weeks You are advised to run SANITIZE at least once a month.		
	Choose Working Tools if you want to run maintenance procedures now.		
	Ignore		

7.1.3 Other routines

Inspect all visible liquid connections, pump syringes and valves, injection port and connector block for leaks each day. If any leaks are discovered, clean and tighten the connections or if necessary replace seals.

If deterioration in performance is suspected, run **Test Tools:System check** to check the system performance as outlined in Section 7.2.2.

7.2 User tools

All user tools are available from the **Tools** menu. **Standby** is available directly under the Tools menu, whereas the remainder are organized under three commands, for working tools, test tools and service tools respectively. To run a user tool, choose the appropriate command, select the user tool and follow the instructions on the screen. The tool choice dialog box includes short information to identify the highlighted tool. The date on which the selected tool was last run is shown at the bottom of the dialog box.

Standby

This procedure maintains a low flow of buffer through the IFC and flow cells for up to 4 days. Buffer consumption is approximately 20 ml/day. The procedure uses both continuous flow and autosampler pumps to ensure a clean system. *Standby* may be appended to a method (method command APPEND STANDBY).

Note: Once the procedure has been started, the instrument will remain running in standby mode even if the user exits the software, logs-out, or restarts the PC.

It is not necessary to stop **Standby** when starting new software operations, creating templates or methods, or even undocking a sensor chip. The software will automatically stop **Standby** immediately before starting a new instrument operation and it is therefore recommended to leave the instrument in **Standby** mode while carrying out operations such as loading the instrument racks or creating a new wizard template etc.

Required solutions: Running buffer.

The procedure is controlled via the *Start Standby* and *Stop Standby* commands directly under the *Tools* menu.

The remaining time for the standby procedure is shown in the status window. Note that the *Start Standby* option is available even if the standby procedure is currently running. Selecting this option brings up the usual start dialog box:

BIACORE	×
٩	This leaves the instrument in standby mode for up to 4 days. Make sure there is sufficient buffer or deionized water in the buffer compartment and that the waste bottle is empty. Buffer consumption is approximately 20 ml/day.
	Cancel

Click on **OK** to reset the standby procedure to run for 4 days, irrespective of the remaining standby time displayed at that time.

7.2.1 Working tools

The working tools are a set of routines for starting up and shutting down the system and for special cleaning procedures.

🖙 Working Tools	×
Close Desorb Flush Normalize Prime Rinse Sanitize Shutdown Shutdown Shutdown	Start Cancel
Procedure for shutting down the system for up to 5 day and flow cells with liquid from position R2F3, then fills t Total run time is about 7 minutes.	vs. Flushes the IFC he IFC with air.
Last Run Time:	

Close

A procedure for shutting down the system for up to 5 days. The procedure flushes the IFC and flow cells with liquid from a fixed autosampler position (r2f3), then empties the IFC of liquid. Approximately 2.5 ml liquid is required. Deionized or distilled water is recommended as flushing liquid. Total run time is about 11 minutes.

Required solutions: Deioinized water

Desorb

Removes adsorbed proteins from the autosampler and the IFC by flushing with SDS. As a general recommendation, run this procedure once a week. For some applications, a coating of protein on the tubing and IFC channel walls helps to give reproducible results, and the first few runs after **Desorb** may be unreliable. If you observe this behavior, run **Desorb** when you change your protein system rather than once a week. Total run time is about 22 minutes.

A scheduler will issue a reminder at the beginning of the week if more than one week has elapsed since **Desorb** was last run. If the system is busy or switched

off at the scheduled reminder time, the reminder will be displayed at the next possible opportunity (when the system is connected to the PC and is not busy).

Notes: The sensor chip surface may be damaged by the **Desorb** procedure. You may keep a special chip for running **Desorb**, but you should not use it for any other purpose. Rinse the chip after each usage and make sure it is clean before re-inserting it.

Mass spectrometry analysis is sensitive to traces of SDS, which can reduce sensitivity. It is therefore recommended to wash the system extensively between **Desorb** and analyte recovery experiments.

BIAdesorb solutions are available from GE Healthcare as part of the BIAmaintenance Kit. Do not run the procedure below 20°C, since this solution contains SDS which may precipitate at lower temperatures.

Required solutions:	BIAdesorb solution 1
	BIAdesorb solution 2

Flush

Flushes the IFC and flow cells with buffer. Use this procedure for fast cleaning of the IFC and flow cells. Total run time is about 2.5 minutes. *Flush* may be run between cycles in a method (method command FLUSH).

Required solutions: Running buffer

Normalize

Normalizes the resonance signal in all flow cells to compensate for small differences between individual sensor chips. Use this procedure a) when the opto-interface is changed, b) when the temperature is changed, and c) when a new sensor chip is docked and maximum sensitivity is required. Total run time is about 4 minutes. *Normalize* may be run between cycles in a method (method command NORMALIZE with a parameter for the normalization solution rack position).

Note: If **Normalize** is included in a method and the normalization fails, the method will terminate.

The concentration of glycerol used for normalization is critical. BIAnormalizing solution is available from GE Healthcare as part of the BIAmaintenance Kit. If you cannot perform a successful normalization, the opto-interface or sensor chip may be defective.

Required solutions: BIAnormalizing solution

Prime

Primes the liquid system by flushing pumps, IFC and autosampler with buffer. Use this procedure at start up and when the buffer is changed, and also to remove small air bubbles which may accumulate during operation at low flow rates for long periods. Total run time is about 6 minutes. *Prime* may be run between cycles in a method (method command PRIME).

Required solutions: Running buffer

Rinse

Washes the injection port thoroughly, then rinses the IFC and flow cells with buffer. Use this procedure to clean the IFC and flow cells. Total run time is about 3 minutes. *Rinse* may be run between cycles in a method (method command **RINSE**).

Required solutions: Running buffer

Sanitize

Cleans pumps, IFC and autosampler from micro-organisms. Run this procedure once a month. For best results, run **Desorb** beforehand. Total run time is about 45 minutes.

A scheduler will issue a reminder at the beginning of the week if more than four weeks have elapsed since *Sanitize* was last run. If the system is busy or switched off at the scheduled reminder time, the reminder will be displayed at the next possible opportunity (when the system is connected to the PC and is not busy).

Note: The sensor chip surface may be damaged by the **Sanitize** process. You may keep a special chip for running **Sanitize**, but you should not use it for any other purpose. Rinse the chip after each usage and make sure it is clean before re-inserting it.

Required solutions: BIAdisinfectant solution BIApreservation solution (or 0.005% Surfactant P20 in deionized water)

Shutdown

A procedure for shutting down the system for more than 5 days. The procedure flushes the IFC and flow cells with water, empties the IFC of liquid and then flushes the pumps and tubing with 70% ethanol. Total run time is about 10 minutes.

IMPORTANT Follow the instructions on the screen carefully. The IFC does not withstand exposure to 70% ethanol, and must be disconnected before the pumps are flushed with ethanol.

Required solutions: Deionized water. 70% (v/v) ethanol.

Surface Prep Wash

This tool provides an extended wash of the Surface Prep unit in between working sessions and helps to minimize potential carry-over effects between experiments. The **Surface Prep Wash** procedure can be selected for either the four flow cell (SP_1) or single large-area flow cell (SP_2) configuration of the Surface Prep unit. See Appendix G for a more detailed description of Surface Prep unit maintenance.

Note:	There are three tools for flushing the system with buffer. The essential
	differences between these are summarized below.

Tool	Description	Time
Flush	Flushes the continuous flow pump and IFC briefly at a moderate flow rate. Use Flush if you want to clean the IFC rapidly and do not have problems with air bubbles.	2.5 min
Rinse	Washes the injection port and flushes IFC channels at a high flow rate. The high flow rate helps to remove air bubbles that may be trapped in the system. Use <i>Rinse</i> regularly if you run at a low flow rate or elevated temperature where air bubbles may be a problem.	3 min
Prime	Washes the pumps, autosampler tubing and IFC with buffer. Use Prime when you want to change the buffer in the pumps.	6 min

7.2.2 Test tools

The test tools are a set of routines for testing the system performance.

Signal quality check

This procedure checks the signal from the flow cells. The test finishes by displaying the flow cell status.

🛜 Signal Quality Check		nal Quality Check	×	
	Fc	Status	Repeat Check	
	1	OK	2- 7 -7	
	2	ОК	Evit	
	3	Out of dynamic range	<u> </u>	
	4	Out of dynamic range		
	,			

If signal quality is acceptable, the status is "OK". If the status is "Out of dynamic range" or "Poor signal quality" there may be air, particles or a high refractive index solution (e.g. glycerol) in the IFC channels, or the opto-interface may be bad.

If the signal quality is not acceptable, try running **Working Tools:Prime** once, to run buffer through the IFC. If this doesn't help, run **Normalize** once. If signal quality still hasn't improved, contact your GE Healthcare service representative.

System check

This procedure performs a comprehensive check of system performance, using a standard sucrose solution which is provided in the BIAmaintenance kit from GE Healthcare. Total run time is about 40 minutes.

You should run the procedure at 25°C with a Sensor Chip CM5 reserved for this purpose, on which no ligand has been immobilized. For maximum reliability we recommend that you use a new Sensor Chip CM5.

Required solutions: BIAtest solution HBS buffer

The sensorgram resulting from system check is displayed in an untitled sensorgram window. You may evaluate the unsaved sensorgram directly and/or save the sensorgram with *File:Save* for later inspection.

System check evaluation

This procedure generates a report on the saved results of system check. Choose the system check result file in the **Open** dialog box. The evaluation protocol (2 pages) is displayed on the screen with scrolling facilities, and can be printed with the **Print** button. The protocol includes instructions for assessing the system check results.

Note: Unsaved system check results can be evaluated with the same procedure by choosing **Evaluate** when the system check procedure is complete.

7.2.3 Service tools

The service tools are a set of routines for system maintenance.

🖙 Service Tools	×
Injection port Needle replacement/positioning Software Problem Report Syringe/tip (left) Syringe/tip (right) Unclogging Superclean	<u>S</u> tart Cancel
Guides the maintenance or replacement of the injection port. Note:This procedure must be followed by the Needle replacement/positioning. Total run time is about 5 minutes.	
Last Run Time:	

Injection port

A guide to the maintenance or replacement of the injection port and connector block.

Note: This procedure must be followed by a needle positioning test (**Needle** replacement/positioning).

Needle replacement/positioning

A guide to replacement of the autosampler needle and needle positioning test. Needle positioning can be checked without needle replacement.

Software problem report

A utility to help in formulating a problem report in the event of malfunction. If possible, run this utility on the PC controlling the system and allow the utility to collect computer system information automatically. The report generated by this utility may be submitted by e-mail or printed out and faxed to GE Healthcare.

Syringe/tip (left)

A guide to replacing the syringe tip on the left-hand pump.

Syringe/tip (right)

A guide to replacing the syringe tip on the right-hand pump.

Unclogging

Clears partially blocked IFC flow cells and loops by flushing with buffer at a high flow rate. Total run time is about 4 minutes. *Unclogging* may be run between cycles in a method (method command UNCLOG).

Required solutions: Running buffer.

Superclean

Provides extensive cleaning of the entire fluidics system. *Superclean* is run at 25°C, using Sensor Chip Maintenance and takes approximately 90 minutes. It is strongly recommended that each *Superclean* run is preceded by a *Desorb* and followed by a *Prime*.

7 Maintenance 7.2 User tools
8 Troubleshooting

If you have problems with Biacore 3000 or with your results:

As a first measure	Run Test Tools:System check to verify system performance. Remember to dock an unused sensor chip before running this procedure. If the system check results do not indicate any instrument malfunction, check your method and reagents carefully for possible sources of error.
If you obtain unexpected or unacceptable sensorgram results	Read Section 8.1.
If you suspect a specific instrument malfunction	Read the relevant part(s) of Section 8.2
If you have problems with Biacore 3000Control Software	Read Section 8.3
If you cannot identify or correct problems with the help of the information here	Call your GE Healthcare service representative.

Note: In order to ensure consistent, high quality data, it is extremely important to follow careful experimental routines (such as keeping buffers degassed) and to keep your instrument properly maintained. See Chapter 7 for details on how to keep your Biacore 3000 instrument clean and properly maintained.

8.1 Sensorgram problems

8.1.1 Signal noise

Normal signal noise levels are <0.1 RU RMS (< 0.3 RU peak-to-peak) at data collection rate 1 Hz. Excessive noise may be caused by:

• air or particles in the sample or buffer. Degas and filter solutions. Run *Working Tools:Prime* to remove air which may accumulate in the flow cell channels.

- mechanical vibration. The instrument should be placed on a firm bench. Do not place heavily vibrating equipment (e.g. an unbalanced bench centrifuge) on the same bench as Biacore 3000.
- electrical noise. Do not place the instrument in an area subject to strong electrical or magnetic fields.

8.1.2 Low data quality

Low data quality is indicated by a thick line on the sensorgram and an entry in the extended event log (choose View:Extended Event Log).

Low data quality is normal if the signal rises above about 80,000 RU (corresponding to a bulk refractive index of >1.40). This may be caused by injection of air which shifts the baseline so that the signal is outside the dynamic range of the instrument. Low data quality below 80,000 RU may be caused by aggregation of material on the sensor chip surface. If low data quality is reported in other circumstances, dock a new sensor chip and run **Working Tools:Normalize**. If the problem persists, contact your GE Healthcare service representative.

Note: The marking for low data quality on the sensorgram extends from the first low quality point to the first normal quality point. If the response curve is very steep, this may sometimes give the impression that the data quality is low even at normal response levels (see the illustration above). The event log records start of low data quality and the return to normal data quality correctly.

8.1.3 Spikes

Spikes in the sensorgram may be caused by:

- small air bubbles in the flow cell. These may appear anywhere in the sensorgram.
- transient matrix effects (see Section B.1) or conformational changes in the immobilized ligand. These appear at the beginning and/or end of sample injection.
- **Note:** As a result of the way data is displayed on the screen, spikes that are represented by only one data point may disappear at certain zoom factors. The same effect may occasionally be seen if the sensorgram is printed at draft quality.

8.1.4 Drift

Signal drift may be caused by sample dispersion, carry-over of sample with a different bulk refractive index, matrix effects or conformational changes in the immobilized ligand. To minimize matrix effects, sample composition should be as close as possible to running buffer. Long-term drift may also result from unstable temperature at the flow cell.

Drift may also be caused by small air bubbles developing in the flow cell and growing in size. If the air bubble breaks free during buffer or sample flow, the drift will suddenly cease (see *Shifts* below).

Release of compounds that have permeated the silicone walls of the IFC during a previous injection (e.g. regeneration with formic acid) can also cause drift effects. If you suspect that this is happening, wash the IFC and run *Working Tools:Prime*.

Use an in-line reference cell where possible to correct for systematic drift effects.

8.1.5 Reproducible disturbances

Flow system events such as releasing the needle from the injection port, refilling the pump, etc can cause small disturbances (\approx 5 RU or less) in sensorgrams. Typically, these events affect all four sensorgrams at the same time in multichannel analyses. These disturbances may be noticeable in very high performance analyses, and may often be corrected by subtracting the signal from an in-line reference cell.

8 Troubleshooting

8.1 Sensorgram problems

Small disturbances of this kind which are reproducibly associated with system events should not be regarded as a malfunction: they are rather a reflection of the very high sensitivity of the instrument.

8.1.6 Shifts

Shifts in signal baseline may be caused by small air bubbles developing in the flow cell and then breaking free into the buffer flow. See Section 8.2.2 for air bubble considerations.

Mechanical instability can also cause shifts in baseline.

8.1.7 No response on injection

Check the detector by injection of 15% sucrose or glycerol in water in multichannel mode. Choose *View:Scale* and set the response scale (y-axis) to *Auto*. If there is no response, contact your GE Healthcare service representative.

Note: If you obtain no response on injection in a method in single channel mode, check that you have not used a DETECTION command in MAIN and a FLOWPATH command in APROG with different flow cell numbers. See Section E.4.1

8.1.8 Poor reproducibility

If repeated injections of the same sample do not give the same response:

- If the variability is systematic with increasing response in later injections, use septa-covered vials to eliminate sample evaporation. Small changes in concentration as a result of evaporation from open vials can give noticeable variations in response.
- If the variability is systematic with progressively decreasing response in later injections, there may be carry-over of running buffer to the sample

vial in the autosampler. Pre-dip the needle in a vial with sample or sample buffer to minimize carry-over effects (see Appendix B). Alternatively, if the samples are cooled, condensation on the inside of the vials may dilute the samples.

- Variations between the first few injections in a series followed by consistent results in the rest of the series may indicate carry-over of material or memory effects from earlier runs. Make sure that the liquid handling system is properly cleaned between runs (see Appendix B) and is equilibrated with the running buffer for the present run (run *Working Tools:Prime* and allow buffer flow for 5-10 minutes before starting the first cycle). If this does not help, run a few dummy cycles with sample injection and regeneration to condition the surface.
- If the variability is random, there may be a fault in the liquid handling system (see Section 8.2.2). Repeated injections performed under manual control may show more variation than repeated method cycles, unless care is taken to use exactly the same conditions for each injection.

8.1.9 Sample dispersion

See Section B.5.3 for a discussion of sample dispersion at the beginning and end of injections. Normal dispersion levels are represented by a response change of 99% within about 0.5-2 μ l after the start and end of the injection depending on the number of flow cells in the flow path. If dispersion is excessive, check the air segments separating sample from buffer in the autosampler tubing.

Undue dispersion in method-controlled runs may be caused by early preparation of a timed injection.

8.1.10 Other application problems

To avoid problems with your applications (i.e. the system functions correctly but your application "doesn't work"), read Appendix B of this manual for aspects specific to Biacore 3000.

8.2 Instrument problems

8.2.1 General failure

If the red **ERROR** indicator lights on the front panel of the instrument, switch the instrument and PC off, wait 1 minute, then restart the system. If the problem persists, contact your GE Healthcare service representative.

8.2.2 Liquid delivery

Pump functions

Faulty liquid handling may cause a variety of problems including incorrect injection volumes, delayed injections, broken air segments during injection, incorrect dilutions and transferred volumes etc. Test liquid handling with injections of sucrose or glycerol solutions which give a well-defined refractive index pulse. Test autosampler functions (dilute, transfer and mix) by preparing defined mixtures of sucrose or glycerol solution and buffer. The plateau response during injection should be directly proportional to the concentration.

Faulty liquid handling can affect *Dilute, Transfer, Mix, Dipneedle, Inject* and other injection commands, and may be caused by:

- incorrect volumes in command. Check the values in the manual dialog box or the method.
- problems with air segments (see below).
- incorrect needle positioning (see Section 8.2.3).
- leakage in tubing connections. For correct injections, there should be a delay between the start of the injection as recorded in the event log and the beginning of the response in the first flow cell corresponding to not more than 0.5 µl liquid (e.g. 1 second at 30 µl/min). The delay between responses in multichannel mode should correspond to about 1 µl liquid. Longer delays probably indicate leakage.

Figure 8-1. Illustration of the normal delay between sensorgrams in multichannel mode. Note the enlarged time axis.

- pump failure. Contact your GE Healthcare service representative if the pumps do not operate.
- formation of air bubbles in solutions.
- flow obstruction. Check that the tubing is not sharply bent or trapped so as to obstruct liquid flow. Replace any damaged tubing.
- air in pump syringe. Examine the pump for air bubbles in the syringe. To remove air bubbles, tap the syringe gently during a *Prime* operation.

Air in sample or buffer

Small air bubbles developing in sample or buffer can give rise to a noisy signal or signal spikes. Air bubbles which form in the flow cell and grow in size cause the signal to drift. Air bubble formation can be particularly apparent during long runs (>5 hours), at elevated temperatures and at low flow rates (<10 μ l/min). To minimize problems with air bubble formation:

- degas buffer thoroughly at temperatures above the running temperature or open a new pack of room-tempered HBS buffer.
- for analyses above ambient temperature, degas the buffer at a temperature higher than the analysis temperature. Do not degas for long periods at elevated temperatures, since this may cause significant evaporation of water from the buffer.
- check fittings and tubing connections for leakage.
- run *Working Tools:Prime* at regular intervals (between each cycle in a method).
- increase the flow rate.

For air bubbles injected together with the sample, see Section 8.2.3.

8.2.3 Autosampler

Irreproducible air segments in liquid handling

If the air segments separating sample from buffer in the autosampler tubing are too large or appear to break up, air may be injected over the sensor surface giving a high signal outside the dynamic range of the instrument. In other autosampler operations such as **Dilute**, faulty air segments can lead to delivery of incorrect volumes.

If this happens:

- check that there is sufficient sample in the vial and that the autosampler needle is correctly positioned during sample aspiration.
- check that the autosampler tubing is clean and not damaged. Replace if necessary.
- bear in mind that air bubbles can stick to the walls of plastic vials and can be aspirated together with sample.
- **Notes:** Some reagents, including NHS/EDC (amine coupling reagent) and cyanoborohydride (used in aldehyde coupling) generate gas in small quantities. Gas bubbles may often form during injection of such reagents.

During the analyte recovery procedure, air segments are intentionally passed over the sensor surface.

Bad needle positioning

If the needle positioning is unsatisfactory for the injection port, wash station or rack positions (i.e. too high, too low or displaced to the side):

1 Check that the autosampler rack is correctly seated on the rack base.

2 Run Service Tools:Needle replacement/positioning.

If the needle moves to an invalid rack position, check that the rack used in the autosampler is correctly defined in the control software (*Command:Define Rack Base*).

Samples are warm

The temperature in the autosampler compartment should not be more than 5-6°C above ambient. If lower temperatures are required for sample stability, connect coolant to the rack base using the tubing connectors on the side of the instrument.

The temperature in the autosampler compartment may rise if there is insufficient air circulation around the instrument. Do not place the instrument directly under a shelf. If air circulation is adequate and the temperature in the autosampler compartment is more than 5-6°C above ambient, contact your GE Healthcare service representative.

Note: The temperature in the autosampler compartment does not affect the temperature at the sensor chip surface. Samples equilibrate to the detector temperature during passage through the IFC.

8.2.4 Connector block and IFC

Leakage at the injection port

Clean or replace the injection port on the connector block (*Service Tools:Injection Port*).

IFC valve malfunction

The IFC valves may stick if they are left closed for long periods of time. Run *Service Tools:Unclogging* followed by *Working Tools:Prime* if you suspect that valves are not functioning properly.

The valves are left open in the normal stand-by state (when no sensorgram is running). The working tool *Standby* switches valves at intervals to prevent sticking.

8.2.5 Sensor chip

If you cannot dock or undock a sensor chip, switch the instrument off and restart. If the problem persists, contact your GE Healthcare service representative.

Remember that the commands **Dock** and **Undock** are not available during a run.

8.2.6 Temperature control

Adequate circulation of air around the instrument is important for correct temperature control. There should be at least 20 cm clearance behind and above the instrument. Make sure that the fan inlet (underneath the instrument at the front left-hand side) and outlet (on the back panel at the left-hand side) are not obstructed. Do not put papers under the instrument, particularly at the left-hand side. Paper is easily sucked against the fan inlet, blocking the air intake. Make sure that the space between the bottom of the instrument and the bench is not obstructed by laboratory equipment, notebooks etc.

Unable to reach set temperature

The cooling unit will not maintain temperatures more than 20°C below ambient. With this restriction, if the set temperature is not reached within a reasonable time (heating approximately 1 hour/5°C, cooling somewhat longer), contact your GE Healthcare service representative.

Unstable temperature

If the temperature is not stable during a run (the temperature LED on the front panel flashes), check first that the ambient temperature is not subject to large variations (e.g. open windows, direct sunlight etc). The temperature control in Biacore 3000 may not compensate for sudden changes in ambient temperature (> 5°C over less than about 15 minutes).

An increase in temperature will give a decrease in absolute response.

To check the temperature during a run:

- check the temperature at the beginning and end of each cycle as recorded in the event log.
- use the CURVE temp command in the method to record the temperature throughout the run.

If a constant temperature is not maintained in spite of reasonably constant ambient conditions, the thermostatting unit may be defective. Contact your GE Healthcare service representative.

8.3 Software problems

No contact with instrument

The instance of Biacore 3000 Control Software which has contact with the instrument is identified as Biacore 3000 **on COM1:** in the title bar of the window. If you cannot establish contact with the instrument:

- Check that the cable connecting the PC to the instrument is properly seated. Check also that the cable is connected to the right port on the PC and the instrument (see Chapter 3).
- Check that you do not have another instance of Biacore 3000 Control Software running. Close all instances of the control software and restart it from the Windows *Start* menu (do not start by double-clicking on a Biacore 3000 file in Windows Explorer: control software started in this way will not connect to the instrument).
- Close Biacore 3000 Control Software and shut down the computer. Turn off the power to Biacore 3000 and then restart the system.

File changes not saved

With two instances of the Control Software open, you can open the same file in both instances. If you make changes to the file (e.g. edit a method or add report

points to a sensorgram) in one instance and save the changes, then save the file again from the second control software instance, the changes will be lost. This is because the control software works with a copy of the file contents in memory, and changes in one instance do not affect the working copy in another.

Other problems

For problems relating to the computer hardware or Windows operation, refer to the respective product documentation.

For problems with the Control Software which do not have a readily apparent solution:

- 1 If possible, perform tests to determine whether the problem is reproducible.
- 2 Run the Software Problem Report in Service Tools (Section 7.2.3) to create a report including system-specific information. In the report, the nature of the problem and how you can reproduce it (or alternatively what you were doing when it arose) in as much detail as possible, and submit the report to GE Healthcare (the address is provided in the Software Problem Report utility).

If the software malfunction prevents you from running the **Software Problem Report** from **Service Tools**, the software problem report can be accessed from the software installation CD.

Errors which arise during a run are recorded in the event log for the run.

8 Troubleshooting8.3 Software problems

9 Biacore 3000 Control Software reference

This chapter provides a full reference to the Biacore 3000 Control Software user interface, organized in accordance with the software menu structure. See Chapter 4 for an operational description of how to use the software.

9.1 Starting Biacore 3000 Control Software

9.1.1 Starting from the Windows Start menu

A shortcut to the Biacore 3000 Control Software is installed under **BIA Programs** on the **Start** menu.

It does not matter whether you switch on the instrument or start the software first. If you start the software first, the status window will display the message *Instrument Offline*. Connection will be established when the instrument is switched on.

Depending on the current instrument status when the software is started, you will be prompted for the appropriate set-up action (e.g. dock a sensor chip, prime the system). See Section 4.2 for further details of these actions.

9.1.2 Starting from Windows Explorer

Biacore 3000 Control Software is associated in Windows Explorer with file extensions .blr, .blm and .blw, so that double-clicking on files of these types in Explorer will start the Control Software. The Control Software started in this way however will not be connected to the instrument, and can only be used for writing and editing methods and examining result files.

9.1.3 Multiple software instances

You can start several instances of the Control Software, but only the first instance can be connected to the instrument. If you start multiple instances, you will be warned that the software is already running.

The control software instance that is connected to the instrument is identified as Biacore 3000 *Control Software on COM1* in the window title bar (and in the

9.1 Starting Biacore 3000 Control Software

icon title if the window is reduced to an icon on the desktop). Other instances are identified simply as Biacore 3000 *Control Software*.

Note that only one instance of the software can be connected to the instrument.

The number of instances you can open depends on the Windows system resources available in your computer. The following error messages appearing at start-up may indicate that system resources are insufficient:

- Out of memory
- ConnectToBiacore, unexpected error=20100
- Could not start communication server

If you receive one of these messages, close some other applications and try again.

9.1.4 Recovering lost data

A message *Lost data found* displayed when you start the control software indicates that a previous run was not correctly saved (this can happed for example if there is a power failure during a run). If you choose to recover the lost data, the data will appear in a sensorgram window and can be saved as a normal result file. If you choose not to recover the data when the control software starts, the lost data will be deleted permanently and cannot be recovered at a later date.

9.1.5 Start-up routines

At start-up, the system may display a reminder that it is time to run the working tools *Sanitize* and/or *Desorb* (see Section 7.1.2). This reminder appears when more than the recommended interval has elapsed since the respective tool was last used. You may choose to run the maintenance tool or ignore the reminder and run the tool at a later date. If you ignore the reminder, it will be repeated after one week.

🖬 Remi	nder 🔀
	Last run time for DESORB: 06-jul-98 Time elapsed since last DESORB: 4 weeks You are advised to run DESORB at least once a week.
•	Last run time for SANITIZE: 06-jul-98 Time elapsed since last SANITIZE: 4 weeks You are advised to run SANITIZE at least once a month.
	Choose Working Tools if you want to run maintenance procedures now.
	Ignore

9.2 Screen display

The Biacore 3000 screen is divided into six main areas:

Figure 9-1. Biacore 3000 screen.

- The menu bar provides access to menu commands. Many of the commands can also be accessed through shortcut keys (see Section 9.3).
- Buttons on the **toolbar** duplicate frequently used menu commands for more convenient access.
- The **sensorgram window** displays the progress of the interaction as a sensorgram. This area also displays the **method editor window**.
- The **report point table** records sensorgram information at each report point.
- The **event log window** records important parameters at the start and end of each run and at events during the run.
- The **status window** displays the current instrument status, including current response, continuous flow rate, temperature, data collection rate. System status messages are displayed at the bottom of this window.

9.2.1 Menu bar

Menu commands follow Windows standard usage. Briefly:

- To select a menu, click on the menu name in the menu bar or press *Alt* followed by the underlined letter in the name.
- To close a menu, click anywhere outside the menu or press *Esc*.
- To choose a command, select the menu then click on the command or press the underlined letter in the command. Alternatively, press the shortcut key or key combination (see Section 9.3). You do not need to select the menu in order to use the shortcut key.

Commands which are dimmed cannot be used in the current circumstances (e.g. you cannot start a sensorgram unless you have docked a sensor chip).

Some commands change according to the current circumstances (e.g. **Run Sensorgram** changes to **Stop Sensorgram** when a sensorgram is started).

9.2.2 Toolbar

The toolbar contains buttons for commonly used commands. Click on a toolbar button to choose the corresponding command. All commands are also available from the menus.

	é 🔒		x11/3	۲,	¥	2	Eycle	: 1 🔽	Curve:	- Sensorgram Fc=4	ŀ
--	-----	--	-------	----	---	---	-------	-------	--------	-------------------	---

Buttons which are dimmed cannot be used in the current circumstances (e.g. you cannot start a sensorgram unless you have docked a sensor chip).

The *Cycle* list box shows the current cycle during a method run and allows you to select which cycle to display. (Each cycle corresponds to an APROG in the method (see Section 6.3) and contains one, two or four sensorgrams depending on the detection mode.)

The *Curve* list box identifies and allows you to select the "active" curve in multichannel mode. Coordinates for the active curve are displayed in the status window. Changing the active curve does not affect data collection.

9.2.3 Sensorgram window

The sensorgram window displays the progress of the current analysis.

The display is automatically scaled by default to accommodate the sensorgram(s). Scaling can be set manually with *View:Scale*, or adjusted to fit the current sensorgram(s) with *View:Adjust Scale*. See the command descriptions in Section 9.6 for more details.

To zoom the display, drag the mouse marker over the area to be enlarged. To return the standard display, choose *View:Unzoom* or double-click with the left mouse button in the sensorgram window.

The sensorgram(s) may show event markers (triangles on x-axis), report points (crosses on sensorgram with the report window indicated) and baseline and/or reference line (horizontal and vertical lines respectively). See Section 9.6 for more details.

Fixed colors are used to distinguish the flow cell for each sensorgram:

Fc1	red
Fc2	green
Fc3	blue
Fc4	magenta
reference subtracted	black

For best display of the sensorgram window, make sure that the window background color is set to white (this is the normal Windows setting).

9.2.4 Report point table

Fc	APROG	Time	AbsResp	Slope	Baseline	RelResp	ld	Analyte	MW	AnalyteConc	Conc	
1	ConcSeries	414.5	17942.3	-0.06	Yes	0	baseline	p24	24000	0nM	0n	
2	ConcSeries	414.6	18626.3	-0.08	Yes	0	baseline	p24	24000	OnM	On	
2-1	ConcSeries	414.6	684.0	0.00	Yes	0	baseline	p24	24000	OnM	On	
1	ConcSeries	424.5	17939.7		No	-2.6	AssociationStart	p24	24000	OnM	On	
2	ConcSeries	424.6	18624.3		No	-1.9	AssociationStart	p24	24000	OnM	0n	
2-1	ConcSeries	424.6	683.8		No	-0.1	AssociationStart	p24	24000	OnM	On	
1	ConcSeries	604.5	17934.4		No	-7.9	DissociationStart	p24	24000	OnM	On	
2	ConcSeries	604.6	18622.3		No	-3.9	DissociationStart	p24	24000	OnM	On	
2-1	ConcSeries	604.6	684.4		No	0.4	DissociationStart	p24	24000	OnM	0n	•

The report table records sensorgram information at each report point. For details on the type of information recorded, see Section 9.5.

9.2.5 Event log window

The event log window records all events in the current cycle. "Events" may be functional breakpoints such as injections or changes in the flow rate or status information such as time stamp and detector temperature. Note that events outside cycles in methods (i.e. in the MAIN block) are not recorded in the event log.

The event log may be displayed in brief or extended mode. Choose **View:Extended Event Log** to toggle between these modes. In brief mode, only essential events and information are displayed. Additional information displayed in extended mode can be useful in troubleshooting situations. Messages which can appear in the event log are documented in Appendix D.

The event log starts when a sensorgram is started. The first entries in the log always record the date and time, the flow cell temperature at the start of the run, the initial flow path, flow rate and the rate of data collection.

Event <u>L</u> Time	og Info	
0.0	Timestamp: 02-jun-98 14:53:10	
0.0	Set Temperature: 25.0 °C	
0.0	Temperature: 25.01 °C	
0.0	Rack 1 (Left): Thermo_C	
0.0	Rack 2 (Right): Thermo_A	
0.0	Flow Cell: 1-2	-
	Event L Time 0.0 0.0 0.0 0.0 0.0 0.0	Event Log Time Info 0.0 Timestamp: 02-jun-98 14:53:10 0.0 Set Temperature: 25.0 °C 0.0 Temperature: 25.01 °C 0.0 Rack 1 [Lett]: Thermo_C 0.0 Rack 2 (Right): Thermo_A 0.0 Flow Cell: 1-2

Use the scroll bar to scroll through the log.

If the reference line is displayed on the sensorgram display, you can click on a line in the event log to highlight the event and move the reference line to the corresponding event marker (provided that the event is within the current sensorgram display window).

9.2.6 Status window

The status window shows the current instrument status:

- Fc2 - Fc1 Time:	34.6 s	Resp. Diff.	-75.6 RU
Flow: 20 Actual Te Running	µl/min emp: 25.05 sensorgra	Flow P C Detecti m	ath: 1-2 ion Mode: 1,2

- the elapsed time and response for the active sensorgram when a sensorgram(s) is running.
- the current flow rate and flow path.
- the flow cell temperature. Before the temperature at the flow cell is stable, the temperature is displayed in red text and toggles between preset and actual temperatures in red text. Once stable, the temperature at the flow cell is displayed in black text.
- the detection mode (during manual runs).
- system messages (documented in Appendix D).
- In addition:
- If the reference line is displayed, the elapsed time and absolute response at the reference line are shown for the active sensorgram (see *Curve* list on tool bar).
- If both reference line and baseline are displayed, the elapsed time and relative response (baseline = 0) at the reference line are shown for the active sensorgram.

9.2.7 Method editor window

The method editor is used for writing and editing methods. Open the method editor window with either *File:New Method* for a new method or *File:Open* for a saved method file. Multiple method editor windows can be open simultaneously.

🛃 Metho	d 2						_ 🗆 ×
! This	is a metho	d for	immobilization	using	amine	coupling.	<u></u>
DEFINE	APROG immol	b					
	FLOW	10					
	DILUTE	r1a1	r2a2 r1a3 50				
*	INJECT	r1a3	70				
-0:30	RPOINT	Base.	line -b				
	INJECT	r1a1	70				
*	INJECT	r1a2	70				
	EXTRACLEAN						
8:00	RPOINT	immol	ö				
END							
MAIN							
flow	sell 1						
APROC	3 immol	p					
END							
							$\overline{}$
4							

Note: The method editor cannot be used if a sensorgram is running. Start another instance of the control software if you want to edit methods while a sensorgram is running.

For a description of how to write methods with the method editor, refer to Appendix E.

9.3 Menus and buttons

Several commands in Biacore 3000 have corresponding buttons in the toolbar for quick access. All commands are available from the menus: many have in addition shortcut keys as an alternative (shortcut keys are shown alongside the commands in the menus where appropriate). The table on the next page lists toolbar buttons and shortcut keys for menu commands.

Toolbar button icons are displayed in some dialog boxes (e.g. *Inject*) to help to identify the dialog box. A special icon in some boxes (e.g. *Dock*) indicates that a manual operation is required:

Indicates manual operation

- 9 Biacore 3000 Control Software reference
- 9.3 Menus and buttons

Menu/Command	Toolbar button	Shortcut key
File		
Open	² dr	Ctrl-O
Save		Ctrl-S
Print		Ctrl-P
Edit (sensorgram)		
Copy Graph		Ctrl-H
Add Report Point	<u></u>	
Edit (method)		
Undo		Ctrl-Z
Cut		Ctrl-X
Сору		Ctrl-C
Paste		Ctrl-V
Find		Ctrl-F
Replace		Ctrl-R
View		
Unzoom		Ctrl-U
Reference Line	¥	F8
Baseline		F9
Notebook	<u>(</u>	
Wizard Results		Ctrl-R
Command		
Inject/Stop Inject	ji ji	
Transfer	<u>1</u>	

Mix	Ő	
Flow/Stop Flow		
Run		
Run/Stop Sensorgram	k, k.	
Tools		
10013		

9.4 File menu

New Method

File		
New Method		
New Application wizard		
Open	Ctrl+O	
Close		
Save	Ctrl+S	
Save As		
Export		۲
Print	Ctrl+P	
Properties		
1 CaM_IFC_to_MALDI_add_trypsin.blr		
2 fish_dig_dep.blr		
3 osja030211AnalyterecoveryMSP		
Exit		

Opens a new, empty method editor window.

See Appendix E for a description of how to write methods in the method editor.

File:New Method is not available while a sensorgram is running.

New Application Wizard

Opens the New Application Wizard dialog box:

🖙 New Application Wizard	×
Surface Preparation Analyte Recovery Binding Analysis Kinetic Analysis Customized Application	<u>C</u> reate New
	Cancel
The Surface preparation application wizard guides you steps in preparing the sensor surface for analysis, inclu scouting ligand immobilization, regeneration scouting a performance test.	through the essential ding immobilization pH nd surface

Click on *Create New* to define a new template, or *Open Template* to use or modify an existing template.

Open (ctrl-O)

Opens an existing method or result file.

Open BIACOF	RE File			? ×
Look jn:	C BIACORE 3000 results	- 6		8-8- 5-5- 6-6-
980602a.b	lr.			
19806020.D	4			
File <u>n</u> ame:	980602b.blr			<u>O</u> pen
Files of type:	All BIA Files (*.bl?)		J 🗌	Cancel

Change the folder if necessary in the *Look in* field. Select the file to open or enter the file name in the *File Name* field.

Opening a result file (default extension .BLR) opens a sensorgram window containing the results. Only one sensorgram window can be open at once.

Opening a method file (default extension .BLM) opens a method editor window containing the method. Several method editor windows can be opened simultaneously (the maximum number depends on the available Windows system resources).

File:Open is not available while a sensorgram is running.

Close

Closes the active window (sensorgram or method editor). If the current contents of the window have not been saved, you will be given an opportunity to save the results or method.

File:Close is not available while a sensorgram is running.

Save (ctrl-S)

Saves the contents of the currently active window as a file. This option is equivalent to *File:Save As* when a file is saved for the first time.

The file is saved as a result or method file according to whether the window is a sensorgram or method editor window respectively. A saved file includes sensorgram data, report point table, event log, method definition and notebook. A saved method file contains a text representation of the method, including any pre-run error messages (see **Run:Prerun Method**).

You can save a result file at any time during a run without interrupting the run. The results are saved at the point when you choose the command. If **Automatic** *Save* is active under *Tools:Preferences*, results will be saved automatically at preset intervals during manual runs.

Result files are saved in Biacore 3000format. Use *File:Export* in the sensorgram window to export sensorgram data to a text file readable by other programs.

For a file which has already been saved, the *Save* command saves the data with the original file name, overwriting the original copy. Use *Save As* if you want to save the data with a different file name (e.g. if you have made changes to the notebook contents and want to keep the original result file).

Save As

Saves the contents of the currently active window in a new file. For a file which has not previously been saved, *Save As* is equivalent to *Save*.

Save Results	: As				? ×
Save jn:	C BIACORE 3000 results	•	£	ri k	8-6- 8-6- 8-6-
L					
File <u>n</u> ame:	anti p24 c3046				<u>S</u> ave
Save as type:	Results (*.blr)		•		Cancel

Export

You can export either sensorgram data or report point table to tab-separated text files for transfer to other applications. Choose which type of data to export from the submenu.

Sensorgram data are exported as tab-separated table of time and response values. In multichannel mode, one or more sensorgrams are exported according to the current display mode (see *View:Overlay* and *View:Plot Curve Classes*). The whole time range of the sensorgram data is exported, regardless of the range currently displayed in the sensorgram window.

Report point data are exported as a tab-separated table. Report points for cycles and all sensorgrams are exported regardless of the current display mode.

Exported data may be imported directly into most spreadsheet programs (e.g. Microsoft Excel®) or curve-fitting programs (e.g. Origin) by choosing tabseparated text format for the import operation. Note that BIAevaluation software can open .BLR files directly and does not require data to be exported. The event log cannot be exported. Notebook contents cannot be exported, but can be copied to other applications using the Windows clipboard.

File:Export is only available when a sensorgram window is active. You can export sensorgram data at any time during a run.

Print (ctrl-P)

Prints the contents of the active window.

📰 Print Results		×
Printer: HP DeskJet	890C	OK
 ☐ File Properties		Cancel
Sensorgram Graph Jable Event Log All Cycles	□ Wizard <u>R</u> esults □ Notebook □ Options □ Eit To Page □ Draft	Set <u>up</u> <u>M</u> ore >>

The following options are available for the sensorgram window:

- *File Properties* Check this box to print the file information (see *File:Properties*).
- **Graph** Check this box to print the contents of the sensorgram window. Sensorgrams are printed as currently displayed with respect to overlay mode, markers, reference line/baseline and zoom settings. If **All Cycles** is checked, data for all cycles in the run will be printed. Otherwise, data for the current cycle only is printed.
- TableCheck this box to print the report point table. The keywords in
the printed report point table are those displayed on the
screen (see View:Keywords).
- *Event Log* Check this box to print the event log. The normal or extended event log is printed according to the current event log mode.
- **All Cycles** Check this box to print data from all cycles in a multi-cycle run. If this box is not checked, only the currently displayed cycle will be printed.
- *Wizard results* Check this box to print the wizard results. Only available of the sensorgram was obtained by running an application wizard.
- *Fit To Page* Check this box to print each component on a separate page.

- **Draft** Checking this box reduces the number of points printed on the sensorgram. Use this feature if memory shortage in your printer causes difficulty in printing sensorgrams with large numbers of data points, or if printing takes an unduly long time.
 - **Note:** Printing in draft mode can occasionally hide single-point spikes in the sensorgram by skipping the outlier point. Do not use draft mode unless you have problems printing in normal mode.

Click on *Setup* to set the current printer properties (printer driver, page orientation, paper tray etc).

Click on the *More>>* button to set the margins and to select header and footer components for the printout.

Controlling sensorgram print size

Sensorgrams are printed at the current width of the page (between the margins). To print at a smaller width, increase the margin settings.

If *Fit to Page* is not checked, sensorgrams are printed with the same *proportions* as the current sensorgram window on the screen. Thus if the window is tall and narrow, the printout will also be tall and narrow. Drag a corner of the sensorgram window to adjust the window proportions.

If *Fit to Page* is checked, sensorgrams will be scaled to fit within the margins of the printed page, regardless of the proportions of the sensorgram window on the screen. To change the printed proportions in this mode, change the margin setting accordingly.

Properties

Displays information about the file, including the size, identity and location of the file, run information, details of the instrument used and software version information.

File Information		
Name:	CaM IFC to MALDI.blr	ī
Path:	C:\BIA projects\results	
Size:	39 KB	
Run Information		
User:	J. Smith	
Туре:	Analyte Recovery	
Template:	CaM recovery	
Cycles:	3	
Start Date:	14/01 2003 16:56:34	
End Date:	14/01 2003 18:03:02	
Instrument		
Processing Unit:	BIACORE 3000	
Instrument Id:	123	
IFC:	IFC6	
Created With Software		
Name:	BIACORE 3000 Control Software	
Version:	4.0	
Current Software		
M	DIACODE 2000 Commel Column	

Exit

Closes the Biacore 3000 Control Software. You are given an opportunity to save the data in any unsaved windows before closing the application.

You will be given a number of options for how to deal with the instrument before closing the application:

🔙 Exit Software	· X
	What do you want to do with the instrument?
	Leave instrument in standby mode
	C Close down the instrument for a short term period
	Shut down instrument for a long term period
	○ Exit the software
	This leaves the instrument in standby mode for up to 4 days. Flushes the IFC and flow cells with buffer at a low flow rate.
	The software will be shut down as soon as the standby procedure has been started.
	Next > Cancel

Select a radio button and click on *Next* to bring up the dialog box from the appropriate working tool. For more information on closing down the system, refer to Sections 4.7 and 7.2.

You cannot close the application while a sensorgram is running.

If several instances of the control software are running, this option will only exit from the active instance and only prompt to shut down the system if the instance is connected to the system.

Note: BIAevaluation applications are not closed by exiting the control software, even if they were started from the control software **Tools** menu.

9.5 Edit menu

This menu is only displayed when a sensorgram or method editor window is active. The menu options relate to the type of active window.

Sensorgram window

The options that follow relate to the sensorgram window.

Copy Graph (ctrl-H)

1

Copies the current sensorgram display to the Windows clipboard. The copied display can then be pasted into another Windows application, e.g. Word or Write.

This option does not copy the report point table or the event log.

Add Report Point

Opens a dialog box for adding a new report point to the current sensorgram window.

Enter values for *Time* and *Window* and a report point identifier for *Id*. If the reference line is active, the time at the reference line is suggested as the time for the report point. Response values recorded in the report point table will be the average response over the time window centered on the report point time.

Check **Baseline** if this report point is to be used as a baseline for subsequent points. Check **Apply to all curves in window** if you want to record a report point for all sensorgrams in the window in multi-channel mode. If this box is not checked, the report point will be recorded for the active sensorgram only (as indicated by the **Curve** list box in the toolbar). The information displayed in the report point table is determined by the settings under *View:Keywords*. These settings can be changed at any time.

Note: You can also add report points to additional curves created with the CURVE command in a method, allowing report points to record e.g. temperature or buffer flow at specified times during the analysis.

To edit or delete a report point, double-click on the corresponding line in the report point table.

📰 Edit Report Point	×
Sensorgram Fc=2	ОК
Lime: 414.3 s	<u>D</u> elete
baseline	Cancel
I Baseline	
Je Eaconic	

Click on *Delete* to remove the report point, or change the settings and click on *OK* to edit the report point definition.

Method editor

Undo (ctrl-Z)

Reverses the last editing action.

Cut (ctrl-X)

Removes selected text and stores it in the Windows Clipboard, from where it can be pasted to a new location in the method or to another method definition. The removed text replaces any previous contents of the Clipboard.

To select text, drag with the left mouse button or hold down Shift and move the cursor with the arrow keys.

Copy (ctrl-C)

Copies selected text and stores it in the Windows Clipboard, from where it can be pasted to a new location in the method or to another method definition. The copied text replaces any previous contents of the Clipboard.

To select text, drag with the left mouse button or hold down Shift and move the cursor with the arrow keys.

Paste (ctrl-V)

Copies the contents of the Windows Clipboard into the current method file at the location of the cursor. A copy of the pasted text remains in the Clipboard until a new selection is cut or copied or the method file is closed.

Delete

Deletes marked text.

To select text, drag with the left mouse button or hold down Shift and move the cursor with the arrow keys.

Adjust Method

Adjusts the method definition to a chosen time base and a standardized text layout. Select the time base (seconds or minutes) from the *Adjust Method* submenu. Changing the time base alters the way times are displayed without changing the actual times (e.g. 2 minutes 30 seconds is displayed as 2:30 in minutes or 150 in seconds).

Note: Time specifications entered as numbers with no punctuation marks are read as seconds. Time specifications which contain a colon are read as minutes in the format MM:SS. The table below illustrates the results of adjusting to seconds or minutes base.

Entered as	Adjusted to seconds	Adjusted to minutes	
30	30	0:30	
75	75	1:15	
0:30	30	0:30	
1:15	75	1:15	
1:5	65	1:05	
1:10:00	4200	70:00	
1:75	error (invalid entry format)		

The standardized text layout indents method command lines to make method structure clear and converts all keywords to capitals. Parameters in LOOP constructions are aligned vertically. An example is shown below.

Before Adjust Method

🛃 Method 2	
! This is a method for immobilization using amine coupling.	4
define aprog immob	
flow 10	
dilute r1a1 r2a2 r1a3 50	
* inject r1a3 70	
-0:30 rpoint Baseline -b	
inject r1a1 70	
* inject r1a2 70	
extraclean	
8:00 rpoint immob	
end	
ma in	
flowcell 1	
anrog immob	
end	
1	

After Adjust Method:Minutes

🛃 Metho	d 2						<u>- 🗆 ×</u>
! This	is a method	1 for	immobilization	using	amine	coupling.	4
l							
DEFINE	APROG immok	5					
	FLOW	10					
	DILUTE	r1a1	r2a2 r1a3 50				
*	INJECT	r1a3	70				
-0:30	RPOINT	Base	line -b				
	INJECT	r1a1	70				
*	INJECT	r1a2	70				
	EXTRACLEAN						
8:00	RPOINT	immol	o				
END							
MAIN							
flow	cell 1						
APROC	 7 immol	- -					
END		-					
							-

Find (Ctrl-F)

Search for a specified text. The search can be specified to match whole words only and/or match case.

🐨 Find	×
Find What: In1a1	<u>F</u> ind Next
Match Whole Word Only	Cancel
Match <u>C</u> ase	

Replace (Ctrl-R)

Replace a specified text string with entered text. The search can be specified to match whole words only and/or match case.

🖙 Replace	×
Find What: Inta2	<u>F</u> ind Next
Replace With: r2a1	<u>R</u> eplace
Match Whole Word Only	Replace <u>A</u> ll
I match Case	Close

Select All

Selects all the text in the file (for Copy, Cut and Delete operations).

9.6 View menu

Commands in this menu relate primarily to sensorgram window display.

Scale

Sets the scale of the sensorgram display. You can also enter a title for the sensorgram. The title is displayed in the sensorgram window (and is independent of file name).

Scaling options may be set independently for the x-axis and the left and right yaxes (options for the right y-axis are displayed only for method controlled runs which use the **CURVE -o** command, see Appendix F).

Auto

Scales the display automatically. For a sensorgram window displaying completed results (i.e. when the sensorgram is not running), auto-scaling adjusts the scale to accommodate the entire sensorgram. During a run, automatic scaling applies only to data collected after the setting is changed to *Auto*. To accommodate the entire sensorgram during a run, use *View:Adjust Scale*.

9 Biacore 3000 Control Software reference9.6 View menu

Method	Scales the display according to the SCALE command in the method APROG by which the sensorgram was generated (not available if the APROG does not include a SCALE command).
Manual	Scales the display according to maximum and minimum values entered in the dialog box.
Logarithmic	Sets a logarithmic instead of a linear scale. Notes: With logarithmic scaling, the maximum and minimum values entered for Manual refer to the absolute response in RU, not to the logarithms of these values. Zero or negative values cannot be plotted correctly on a logarithmic scale.

The default setting is **Auto** except for method-controlled runs where the **SCALE** command is used. Changing the scale of the sensorgram display does not affect the number of data points collected for the sensorgram(s).

The *Scale* dialog box can also be displayed by double-clicking on any of the sensorgram axes.

Adjust Scale

Adjusts the scale of the sensorgram window in both x- and y- directions to display the entire sensorgram.

Choosing **Adjust Scale** is equivalent to setting **Scale** to **Auto** for both axes when a sensorgram is not running. Choosing **Adjust Scale** while a sensorgram is running fits the entire collected data in the display (compare automatic scaling, which adjusts the scale as necessary for incoming data).

Unzoom (ctrl-U)

Restores a zoomed sensorgram display to the previous zoom factor. Doubleclicking with the left mouse button is a short-cut to **Unzoom**.

The display is "zoomed" by dragging the cursor over the area to be enlarged. **Unzoom** will restore up to 10 previous zoomed sizes. When the original size has been restored, the **Unzoom** command is gray.

Reference Line (F8)

Toggles display of the reference line in the sensorgram window. The reference line allows exact coordinates (RU and elapsed time) to be read from the sensorgram. The coordinates are shown in the status window when the reference line is displayed. The response is shown as absolute RU if the baseline is not displayed and as RU relative to the baseline if the baseline is displayed (see *View:Baseline*).

Move the reference line in one or more of the following ways:

- drag the reference line left or right with the cursor.
- press the Home or End keys to move to the beginning or end of the sensorgram window respectively.
- press the PageUp and PageDown keys to move rapidly left or right.
- press the left and right arrow keys for fine placement (pressing an arrow key once moves the reference line by one data point).
- click on a line in the report point table or event log to move to the corresponding marker (provided that the marker is within the current display). This feature can be used even if the report point or event markers are turned off.

The reference line can be used to interactively set the position of report points added to a sensorgram. Place the reference line in the position where the report point is required and choose *Edit:Add Report Point*. The position of the reference line will be suggested as the time for the report point.

Baseline (F9)

Toggles display of the baseline in the sensorgram window. The option is only available when the reference line is displayed. If the baseline is displayed, the status window shows the relative response at the reference line.

To obtain the relative response at a given point:

- 1 Display the reference line.
- 2 Move the reference line to a point to be used as baseline.
- 3 Display the baseline.
- 4 Move the reference line to the point to be measured and read the relative response.
- **Note:** The response values used as baseline and displayed for the reference line represent single data points. Responses measured in this way are thus subject to variations arising from signal noise and are not recommended for determination of binding levels. To obtain more reliable values based on the average signal over a short time period, use report points with a suitable value for the report point window (see **Edit:Add Report Point**).

Plot Single

Displays only the currently active curve in the sensorgram window. Use the *Curve* list to change the current curve.

Plot Curve Classes

Plots either original sensorgrams (from individual flow cells) or referencesubtracted curves according to the type of curve that is currently active. Selecting a different type of curve from the *Curve* list will change the curve class that is plotted.

Note: Additional curves created by the CURVE command in a method form additional classes for **Plot Curve Classes**.

Plot Overlay

Toggles between display of one and several curves in the sensorgram window. The report point table lists report points for the curves that are displayed.

In single sensorgram display mode, choose the sensorgram to display in the *Curve* list on the toolbar. If the keyboard focus is on the curve list, you can switch between curves using the arrow keys.

Method Trace

Displays a method trace window where the progress of the method can be followed. See Section 4.6.4 for details.

Method

Displays the method associated with the current sensorgram window. This command is only available if the analysis was run from a method.

Wizard results

Displays the application wizard results. This command is only available if the analysis was run from an application wizard.

Wizard template

Provides options for running and/or printing the wizard settings used to create the result file. This command is only available if the analysis was run from an application wizard. See Section 5.1 for more details.

Note: It is not necessary to save the wizard settings explicitly as a template in order to use this command. The settings are saved in the result file and may be accessed with **View:Wizard Template** even if no separate template was saved.

Notebook

Opens the notebook for the current sensorgram.

If the notebook has not previously been opened for this sensorgram, the notebook template (see below) will be opened by default. In the notebook, you can move quickly to user-defined "fields" using the tab (forwards) or Shift-tab (backwards) keys. A field is defined by the first occurrence of a colon (:) on a line.

The notebook window has a menu bar with *File* and *Edit* menus. The *File* menu contains an option for printing the notebook. The *Edit* menu contains standard Windows text editing commands (*Undo, Cut, Copy, Paste, Delete, Select* AII).

The same notebook template is available for all runs. The template is set using **Tools:Preferences:Notebook** (Section 9.9). If all text within an existing notebook is deleted, a dialog box is displayed to prompt the user as to whether to load the currently saved template:

BIACORE	X
😲 Load	d Notebook template?
<u>Y</u> es	<u>N</u> o

Markers

Toggles the display of report points and event markers in the sensorgram window.

A *report point* is displayed as an **x** on the sensorgram with an indication of the report point window.

An *event marker* is displayed as a black triangle on the x-axis. Event markers are added to the display at functional breakpoints (such as injections or changes in the flow rate). A description of the event is recorded in the event log.

Extended Event Log

Toggles the event log display between standard and extended. The extended event log includes additional events which may be useful in troubleshooting and service contexts.

Keywords

Selects the keywords to include as headers in the report point table and the number of decimals displayed for report point values.

Choose to show all, none or selected keywords. If you choose *None*, the report point table is hidden.

The keywords are as follows:

SYSTEM defined	<i>Fc</i> (flow cell) for all report points and <i>APROG</i> (name of the APROG) for report points generated by the RPOINT command in a method.
Time	Time for the report point, measured from the start of the sensorgram.
Window	The time window for calculation of response values. The window extends equally on either side of the report point time. Setting the window to 0 selects a single data point.

AbsResp	Absolute response in RU, calculated as the mean value over the time window.
SD	Standard deviation of data points in the time window, calculated as $SD = \sqrt{\frac{1}{(n-1)}\sum(y-\bar{y})^2}$ where n = number of points and y = response in RU
Slope	Slope during time window in RU s ⁻¹ , calculated as
	slope = $\frac{\sum(y-\bar{y})(x-\bar{x})}{\sum(x-\bar{x})^2}$
LRSD	Alignment of slope to a straight line (regression coefficient), calculated as
	LRSD = $\sqrt{\frac{Q_0}{(n-2)}}$ where
	$Q_{0} = \sum (y - \bar{y})^{2} - \frac{\left(\sum (y - \bar{y})(x - \bar{x})\right)^{2}}{\sum (x - \bar{x})^{2}}$
Quality	OK for normal signal quality, Bad for bad data.
Baseline	YES for report points defined as baseline. Otherwise NO .
RelResp	Relative response (difference between AbsResp and baseline) in RU. #N/A if no baseline has been set.
ld	Report point id (text string).
Additional keywords	may be defined for specific cycle types.

Status

Toggles display of the status window between the full window and a single status line showing time, response and status messages.

9.7 Command menu

<u>Command</u> Inject Iransfer <u>M</u> ix	Inject Injects sample over the sensor chip surface.	
Dijute Wash	- Injection	X
Elow Stop Flow	Injection in Fc 1-2	Start Injection
Flow <u>c</u> ell	Sample	Cancel
S <u>e</u> t Temperature	Position: R1A3	
✓ <u>D</u> ock <u>U</u> ndock	⊻olume: <u>β5</u> μl	
Rack <u>B</u> ase	Contact Time: 105 s	
Command Queue	Consumption: 65 μl	<u>M</u> ore >>

Inject command

Choose the appropriate inject command from the list box. A range of inject commands is provided for different application purposes, as summarized in the table below. All inject commands except **MANUAL INJECT** prepare and perform the injection automatically and wash the IFC at the end of the injection. See Section 4.4.6 for a table of preparation and finishing times for the different inject times.

9 Biacore 3000 Control Software reference

9.7 Command menu

Command	Comments	Injected volume	Sample consump- tion	Max flow rate
INJECT	General purpose inject.	5-325 µl	Injected vol +30 µl	100 µl/min
KINJECT	Low dispersion inject for kinetics and for samples sensitive to dilution with running buffer. Controlled dissociation time after sample injection.	10-250 µl	Injected vol +40 µl	100 µl/min
QUICKINJECT	Low sample consumption. Less preparation time than INJECT but more sample dispersion.	5-325 µl	Injected vol +10 μl	100 µl/min
COINJECT	Injection of second sample immediately following the first (e.g. for dissociation in the presence of ligand). Variable contact times for first sample only.	Sample 1: 10-100 µl Sample 2: 15-250 µl	Sample 1: injected vol +40 µl Sample 2: injected vol +40 µl	100 µl/min
BIGINJECT	Large volume inject. Direct inject up to 325 µl, sample loop between 326 and 425 µl, direct between 426 and 750 µl.	326-750 μl	Injected vol +52 µl	50 µl/min*
MANUAL INJECT	Manually controlled inject. See Section 4.4.8.	1-100 µl / loading	Loaded vol +30 µl	100 µl/min

*BIGINJECT cannot be performed at higher flow rates because the autosampler tubing must be refilled during injection from the sample loop for samples larger than 425 μ l.

Variable Contact Times

Check this box for variable contact time injections in multichannel mode. The box is only available if all four flow cells are included in the detection. Volume fields appear for the flow cells in the current flow path (e.g. if you have set flow path 1-2-3-4 there will be four volume fields for an *INJECT* command). Each volume must be less than or equal to the volume in the preceding flow cell. For example, with four flow cells:

Permitted:	40	30	20	10
	40	40	20	20
	40	25	25	10
Not permitted:	40 40	20 30	30 20	10 30

Position

Enter the rack position for the sample to be injected, or select the position from the pull-down list.

Volume

Enter the volume of sample to be injected. The dialog box also displays contact time of the sample with the sensor surface (contact time = injected volume/flow rate) and the sample consumption for the injection (see table above).

The fields in the dialog box are adjusted to correspond to the characteristics of the currently selected inject command (e.g. *COINJECT* requires two sample positions, with variable contact times permitted only for the first injection).

The More>> button opens additional options for the injection:

Check **Predip Needle** and enter a rack position to dip the needle in the specified position before aspirating sample. This operation also aspirates $10 \ \mu$ l from the predip position into the autosampler tubing to prevent the sample from coming into contact with running buffer. Use this feature to minimize carry-over between sample vials, e.g. when solutions of widely different composition are used in succession, and also when it is important that the sample in the vial does not become contaminated with running buffer. Use of **Predip Needle** in an extra vial of sample can also help to minimize sample dispersion in the injection by improving the separation between injected sample and running buffer.

Check *Extra Cleanup* to perform an additional wash of the needle and IFC after the injection. Use this feature to minimize carry-over when the next injection uses sample of widely different composition. (The IFC is routinely washed as part of the standard injection sequence. *Extra Cleanup* should be used if particular care is necessary, e.g. after injection of regeneration solution.)

Manually controlled injections

The inject command MANUAL INJECT starts an interactive injection mode, where the injection can be paused and resumed at any time. See Section 4.4.8 for a full description of manual injection.

The *Inject* command is only available while a manually controlled sensorgram is running.

Stop Inject

Stops the current injection immediately. You can allow the excess sample which has not yet been injected to go to waste or recover it in a selected rack position:

Injec	tion Stopped		
F	Remaining Sample Dispense remaining sample to	R1A4 💌	OK

The **Stop Inject** command is not available during **MANUAL INJECT**. To end a manual injection, click on the **Exit** button in the **MANUAL INJECT** dialog box (see Section 4.4.8).

Transfer

Transfers sample from one rack position to another.

💽 Tr	ansfer		×
हि	Transfer		
	Erom Position:	R1A1 💌	
	<u>T</u> o Position:	R1A2 💌	Cancel
	⊻olume:	35 µl	
	☐ Predip <u>N</u> eedle		
	<u>P</u> ositio	n:	

Enter rack positions and volume to be transferred in the appropriate fields.

Check *Predip Needle* and enter a rack position to dip the needle in the specified position before the transfer operation. This function also aspirates 10 µl from the predip position into the autosampler tubing to prevent the sample from coming into contact with running buffer. Use this feature to minimize carry-over between sample vials, e.g. when solutions of widely different composition are used in succession, and also when it is important that the sample in the vial does not become contaminated with running buffer.

Mix

Mixes sample in one position. Use this command for example after transferring two different solutions to a common vial to prepare a homogeneous mixture.

Enter the required rack position and appropriate volume to be mixed (maximum 450 μ I), then click on **OK**. As a general guideline, mix using 75% of the total volume in the vial. The mixing procedure aspirates the specified volume of sample and then dispenses it to the same vial. This is performed three times.

Check **Predip Needle** and enter a rack position to dip the needle in the specified position before the mix operation. This function also aspirates 10 μ l from the predip position into the autosampler tubing to prevent the sample from coming into contact with running buffer. Use this feature to minimize carry-over between sample vials, e.g. when solutions of widely different composition are used in succession, and also when it is important that the sample in the vial does not become contaminated with running buffer.

Dilute

Sample 1 Position

This command performs the equivalent of **Transfer** followed by **Mix** with a fixed final volume of 200 μ l, and may be used for diluting samples with buffer or for preparing a defined mixture of two samples.

Sample 2 Position	Rack position for the solution to dilute with.
Mix Position	Rack position in which the diluted sample will be prepared.
Total volume	The final total volume of diluted sample is fixed at 200 $\mu l.$
Dilute Sample 1 to	Final concentration of sample 1 expressed as a percentage.

Rack position for the sample to be diluted

The example in the illustration above will prepare a mixture consisting of 70 μ l sample from position r2a1 + 130 μ l solution from position r2a2. The mixture will be prepared in position r2a3.

Check *Predip Needle* and enter a rack position to dip the needle in the specified position before the dilute operation. This function also aspirates 10 µl from the predip position into the autosampler tubing to prevent the sample from coming into contact with running buffer. Use this feature to minimize carry-over between sample vials, e.g. when solutions of widely different composition are used in succession, and also when it is important that the sample in the vial does not become contaminated with running buffer.

Wash

Extra wash of autosampler needle or IFC.

Note: The liquid handling system is washed automatically as required for normal operation. Use the **Wash** command when additional security against cross-contamination is required.

Flow

Sets the flow rate for running buffer.

📑 Flo	ow		×
F	- Set Flow		ОК
	<u>F</u> iow: J30 <u>R</u> efill	μı/min	Cancel

Enter the required flow rate in μ /min (permitted range 0-100 μ /min in steps of 1 μ). To stop the flow, either choose **Command:Stop Flow** or set the flow to 0 μ /min with **Command:Flow**.

If the *Refill* box is checked, the pump will be refilled before the new flow rate is set. The refill operation takes about 7 seconds.

This command is not available unless a sensorgram is running.

Stop Flow

Stops the flow of running buffer. This command is equivalent to setting the flow to 0 µl/min.

This command is only available when the flow is set to a non-zero value. The flow is stopped automatically at the end of a manual sensorgram or methodcontrolled run. The flow cannot be stopped during an injection (except MANUAL INJECT).

Flow path

Changes the flow path during a sensorgram.

Choose the required flow path as indicated by the icons. You can only change the flow path to a subset of the originally selected flow cells (e.g. if you start with Fc1-2, you can change to Fc1 or Fc2 but to any of the other options). Changing the flow path does not change the detection mode.

This command is only available when a sensorgram is running.

Set Temperature

Sets the required temperature at the flow cell.

🖬 Set Temperature		×
Set Temperature	2 <u>51</u> *C	OK Cancel

The temperature display in the status window toggles between the set temperature and the actual temperature until the measured temperature is stable. A temperature change of 5°C takes about 60 minutes.

Wait until the sensor chip surface temperature is stable before performing an analysis (as shown by the temperature LED on the processing unit and the temperature display in the Control Software status window).

Dock

Docks the sensor chip.

The docking operation takes a few seconds to complete. After docking, the *Working Tools* dialog box appears automatically with *Prime* highlighted as a reminder that you should run *Prime* after docking a new chip. For best results, you should also run *Working Tools:Normalize* after docking a new chip.

Undock

Undocks the sensor chip.

🔙 Une	lock	×
Z	Empty flow cells	<u>U</u> ndock
		Cancel

If the *Empty flow cells* box is checked, the flow cells will be emptied of liquid before the sensor chip is undocked. This option is checked by default, and should always be used unless your sensor chip surface is particularly sensitive to exposure to air (e.g. your ligand is readily oxidized in air).

When the undocking operation is complete, the **Dock** dialog box is displayed automatically in preparation for docking a new sensor chip. If you do not want to dock a new chip (e.g. you intend to shut down the instrument), simply choose **Cancel** from this dialog box.

Important! Do not attempt to remove the sensor chip from the instrument until the undocking operation is complete.

Rack Base

Defines the type and placing of racks on the autosampler rack base.

The dialog box shows the current settings for rack base numbers 1 and 2 (left and right on the autosampler respectively) and for the centrally placed reagent rack. Choose the settings that correspond to the racks you intend to use.

The settings in this dialog box determine the positions available for manual commands that use the autosampler (e.g. *Inject, Dilute, Transfer, Mix*) and also the valid positions for the corresponding commands in a method that does not include a RACK command. Positions in a method are checked during pre-run. See Section 4.2.4 for details of valid positions in a method.

Note: There is no automatic sensing of rack type in the software. If you set the wrong rack type, the autosampler needle may be directed to the wrong or non-existent positions. Remember to re-define the rack base using this command if you change the type of rack in the autosampler during manual operation.

Command Queue

Starts or stops the command queue according to the current status of the queue. The command is checked if the queue is started. This command can only be used while a sensorgram is running.

9 Biacore 3000 Control Software reference9.8 Run menu

9.8 Run menu

<u>B</u> un	
<u>R</u> un Sensorgram	
Run Application Wizard	
Run <u>M</u> ethod	
Data Collection Rate	

Run Sensorgram

Starts a manually controlled sensorgram. The **Detection** and **Flow** dialog boxes are automatically displayed before the sensorgram starts, to ensure that the settings are correct for the intended run. By default, these dialog boxes display the most recent settings.

All method editor windows will be closed before the sensorgram starts. If any method editor window contains unsaved changes, you will be prompted to save the method. Changes which are not saved at this stage are lost.

This command changes to Stop Sensorgram while a sensorgram is running.

Note: During sensorgram start, the status window transiently displays various settings for flow rate and flow path, regardless of the settings requested for the run. This is a normal part of the sensorgram start-up procedure. The requested settings will be established before data collection starts.

Stop Sensorgram

Stops the current manually controlled sensorgram. Once you have stopped a sensorgram you cannot resume recording except as a new sensorgram.

The liquid handling system is flushed with buffer and the flow rate is set to 0 at the end of the sensorgram.

The command changes to *Run Sensorgram* when a sensorgram is stopped.

Note: During sensorgram end, the status window transiently displays various settings for flow rate and flow path, regardless of the settings used during the run. This is a normal part of the sensorgram termination procedure. To stop a method, choose **Command:Stop Method**.

Start new cycle

Starts a new cycle in a manually controlled run. This command is only available while a manual sensorgram is running.

Run Application Wizard

Presents a list of application wizards that may be run. See Section 5.1 for more details.

Surface Preparation	Start
Analyte Recovery	
Binding Analysis	Cancel
Kinetic Analysis	
Eustomized Application	
	Use Template
he Surface preparation application wizard g teps in preparing the sensor surface for ana couting ligand immobilization, regeneration	guides you through the essenti lysis, including immobilization p scouting and surface

Run Method

Runs a method from the currently active method editor window or from a file on disk.

If a method editor window is currently active, the *Run Method* command will start the method in that editor window. Otherwise, the command will prompt for a method file.

Run Method					? ×
Look jn:	BIACORE 3000 Methods	- [È.	<u>e</u> ż:	**** ***
aminecoup	pling.blm				
pz4 antibo	odes. Dim				
File <u>n</u> ame:	p24 antibodies.blm				<u>O</u> pen
Files of type:	Methods (*.blm)		•	Ē	Cancel

Select the required method from the dialog box. Pre-run is performed automatically whenever a method run is requested, to prevent syntactically incorrect methods from starting.

Before the method starts, a number of dialog boxes may appear depending on the current instrument status and the method contents:

- If the method does not contain a DETECTION command, you will be asked to select the detection mode and flow path. Make sure that you select a detection mode that is compatible with the method purpose. If in doubt, choose FC1-2-3-4, since this will ensure that data is recorded from all four channels.
- If the data collection rate is currently set to *Low* or *High*, you will be given an opportunity to reset the rate to *Medium*.

9 Biacore 3000 Control Software reference9.8 Run menu

- You will be warned if there is limited space available on the computer hard disk. You should make more space available before starting the run.
- If a sensorgram window is open and the contents have not been saved, you will be given an opportunity to save the results. (Note that this prompt refers to results currently displayed on the screen, not to the results which will be generated by the method being started.) Any open sensorgram window will be closed before the method starts.
- If any method editor windows are open and the contents have not been saved, you will be given an opportunity to save the method(s). All method editor windows will be closed before the method starts. However, if the method is being started from an active method editor window, this window will be reopened when the method is completed. Note that unsaved methods are not reopened on completion of a method that is run from a saved file.

Stop Method

Stops a running method. The method will stop at the end of the current cycle (i.e. the end of the current APROG in the method). Note that the method will run to completion if *Stop Method* is requested during the last cycle in the method. *Stop Method* automatically washes the system as for a normal method completion.

To stop a method immediately, use the emergency stop Ctrl-Break (see Section 4.4.12). You will be asked if you want to wash the liquid handling system.

Data Collection Rate

Determines the number of points collected per unit time during the sensorgram for method and manual runs. The available settings are *Low, Medium* and *High*, corresponding to actual data collection rates as summarized below.

	Number of flow cells				
Data collection rate	1 2 4				
Low	0.1 point/s	0.1 point/s	0.1 point/s		
Medium	1.0 point/s	1.0 point/s	1.0 point/s		
High	10.0 points/s	5.0 points/s	2.0 points/s		

Note: Values in multichannel mode refer to the collection rate per channel.

The default setting of *Medium* is adequate for most purposes. Set the rate to *High* for applications requiring very high resolution. Set the rate to *Low* to reduce the size of the sensorgram file for long runs. A reminder is issued if you start a run with *Data Collection Rate* set to *High* or *Low*. Note that the data collection rate is fixed at 1.0 points/s for all wizard-controlled runs.

Sensorgram data is recorded internally in segments of maximum 36000 points. Thus at a collection rate of 10 measurements/s, one segment will take 3600 s = 60 minutes. When a segment is full, automatic data reduction occurs whereby pairs of adjacent points are averaged to one point and data collection continues at half the previous rate. A new segment is started whenever the **Data Collection Rate** is set (even if the current setting is not changed). To avoid data reduction, therefore, choose **Data Collection Rate** shortly before the end of a segment.

Data reduction is recorded as an event in the event log.

Prerun Method (ctrl-P)

Checks the syntax of the method in the active method editor window. If syntax errors are detected you will be warned, and an explanatory comment will be included in your method to help you find the error. The illustration below shows a syntax error resulting from an incorrectly spelled keyword. See Section 6.5 for further details.

🄰 amine	coupling.	.blm						- 🗆 ×
DEFINE	APROG	immok)					
	FLOW		10					
	DILUTE	Ξ	r1a1	r2a2	r1a3	50		
>> Unre	ecogniz	zed co	mman	1				
	INJCET	Г	r1a3	70				
>>	~							
	INJECT	Г	r1a1	70				
	EXTRAC	CLEAN						
8:00	RPOINT	Г	immo!	0				
END								
MAIN								
flow	cell	1						
APROC	3	immok)					-

Syntax error messages are removed automatically from the method when you correct the error and repeat the pre-run.

Notes: If the method does not contain a **RACK** command, the autosampler position specifications in the method will be checked against the current rack settings. Position specifications which are not compatible with the current settings are reported as syntax errors.

If the Surface Prep unit or MALDI holder are used in the incorrect rack position, **PreRun Method** will not report this error.

Pre-run is performed automatically whenever a method run is requested, to prevent syntactically incorrect methods from starting. You can however save a method with both syntax errors and syntax error messages.

9.9 Tools menu

Evaluation (ctrl-E)

Provides access to BIAevaluation software, which currently provides facilities for:

- overlay plots for comparison of sensorgrams
- evaluation of binding rates
- derivation of kinetic constants
- evaluation of report point tables for concentration measurement.

BIAevaluation software is described in the BIAevaluation Software Handbook.

This command is not available if BIAevaluation software has not been installed.

Standby

Maintains a low flow of buffer through the IFC and flow cells for up to 4 days. See Section 7.2 for a detailed description.

Working Tools

The working tools are a set of routines for starting up and shutting down the system and for special cleaning procedures.

🐨 Working Tools	×
Close Desorb Flush Normalize Prime Rinse Sanitize Shutdown Shutdown Shutdown	Start Cancel
Procedure for shutting down the system for up to 5 day and flow cells with liquid from position R2F3, then fills t Total run time is about 7 minutes.	vs. Flushes the IFC he IFC with air.
Last Run Time:	

To use a working tool, choose the tool from the list and click on *Start*. Instructions for each step in the procedure are provided on the screen.

The last time the highlighted tool was used is displayed at the bottom of the dialog box.

See Section 7.2.1 for a description of the working tools.

Test Tools

The test tools are a set of routines for testing the system performance.

To use a test tool, choose the tool from the list and click on *Start*. Instructions for each step in the procedure are provided on the screen.

The last time the highlighted tool was used is displayed at the bottom of the dialog box.

See Section 7.2.2 for a description of the test tools.

Service Tools

The service tools are a set of routines for system maintenance.

To use a service tool, choose the tool from the list and click on *Start*. Instructions for each step in the procedure are provided on the screen.

The last time the highlighted tool was used is displayed at the bottom of the dialog box.

See Section 7.2.3 for a description of the service tools.

Preferences

The **Preferences** command displays a tabbed dialog box with which manual run save and notebook preferences can be defined. **Preferences** settings apply for all runs until the settings are changed.

Manual Run

Treferences	×
Manual Run Notebook	ОК
Automatic save every: 15 minutes	Cancel
Open command gueue at sensorgram start	

The *Automatic Save* function will save results at the specified interval during a manual run, providing a safeguard against loss of data in the event of a power failure or computer malfunction. Check the box and enter a time interval to turn the *Automatic Save* function on for manual runs. Setting *Automatic Save* to on is recommended.

Note: If **Automatic Save** is turned on, you will be asked for a filename in which to save data before the run is started.

Notebook

🖙 Preferences		×
Manual Run Notebook		ОК
Notebook <u>T</u> emplate:		Cancel
Run: Purpose: Comments:	•	
Sensor Chip: Buffer: Regeneration:		
Immobilized Ligand: Immobilization File: Comments:		
Analyte:	•	

The **Notebook** tab presents an initially blank text field in which the user may freely define a template for the run notebook (Section 9.6). Enter the required text and click on **OK** to save as the default **Notebook Template** for subsequent runs.

9.10 Window menu

₩indow
<u>N</u> ew Window
<u>C</u> ascade
Tile <u>H</u> orizontal
Tile <u>V</u> ertical
<u>Arrange Icons</u>
1 aminecoupling.blm ✓ 2.980602b; Sensorar

New window

Opens a new sensorgram window, providing a new view of the current data. You can set display properties (scale, overlay mode, reference line and baseline etc.) independently for separate sensorgram windows. You can also display different cycles from the same result file in separate windows as long as the sensorgram is not running (you can only display the current cycle during a run). You cannot however display different result files in different windows at the same time.

This feature is particularly useful in multichannel detection mode with reference cell subtraction, since the original data and the subtracted curves frequently require different scale settings.

Other commands in the Window menu are standard Windows functions.

9.11 Help menu

Help on Application Wizards

Opens the on-line help for application wizards.

About

Displays information about the version of Biacore 3000 Control Software currently being used as well as the instrument ID and configuration.

About BIACOR	E		
	BIACORE 30 Version: 4.0	100 Control Software	(OK
	Copyright © 199: Biacore AB	9-2003	
	This software	is licensed to:	
	J. Smith		
	Research & [Development	
	Serial numb	per: BIA-0001	
BIACORE	Instrument Id:	19	
www.biacore.com	n Configuration:	IFC6	

9 Biacore 3000 Control Software reference

9.11 Help menu

Appendix A System specifications

A.1 System performance

A.1.1 Measuring range

The range of measurements that can be performed with Biacore 3000 is in practice highly dependent on the experimental conditions (ligand size and immobilization level, analyte size and concentration, bulk refractive index effects etc). The figures below are typical values. Ranges may be significantly wider under favorable conditions.

Concentration measurement

For analysis times <15 minutes, precision \leq 5% CV dose:

High molecular weight analytes (10⁴ -10⁶ daltons)

direct assay	typically 10 ⁻⁵ - 10 ⁻⁹ M
sandwich assay	typically 10 ⁻³ - 10 ⁻¹¹ M

Low molecular weight analytes (<5000 daltons)

inhibition assay typically $10^{-3} - 10^{-9}$ M

Affinity measurements at equilibrium

K_D typically 10⁻⁴ - 10⁻¹¹ M

Kinetic measurements

High molecular weight analytes (10⁴ -10⁶ daltons)

k _a	typically 10 ³ - 10 ⁷ M ⁻¹ s ⁻¹
k _d	typically $10^{-1} - 5 \times 10^{-6} \text{ s}^{-1}$

Precision of immobilized protein

Between flow cells on one chip

sequential method	typically < 5% CV
serial method	typically < 2% CV

Between sensor chips typically < 10% CV

A.2 Technical specifications

A.2.1 Processing Unit

Dimensions ($I \times w \times h$)	760 × 350 × 610 mm
Net weight	50 kg
Mains supply (type 1) 1	100-120 V~ / 220-240 V~ switched 47-63 Hz, 580 VA max Fuses 2 × T6.25A / 2 × T3.15A
Mains supply (type 2) ¹	100-230 V~ Autorange 47-63 Hz, 400 VA max Fuses 2 × T5.0A H
Memory protection	Lithium backup battery
Ambient temperature range	15-35°C
Ambient humidity	20-85% RH
Safety standard	electronics designed to IEC requirements
Acoustic noise level (LEQ)	<60 dB(A) measured using standard procedures

¹ Instruments are fitted with one of two power supply types. Refer to the mains input panel to determine the specifications for your instrument.

A.2.2 Detection Unit

Light source	LED (Light Emitting Diode)
Wavelength	760 nm
Band width	< 5 nm
Refractive index range	1.33-1.40 (0-70,000 RU)
Baseline drift	typically < ± 0.3 RU/minute
Data output one flow cell two flow cells four flow cells	0.1, 1 or 10 measurements/s (0.1-10 Hz) 0.1, 1 or 5 measurements/s (0.1-2 Hz) 0.1, 1 or 2 measurements/s (0.1-5 Hz)
Noise	typically < 0.3 RU RMS (10 Hz) < 0.1 RU RMS (1 Hz)
Temperature range	4 - 40 °C (not lower than 20 °C below ambient temperature)

Temperature stability	Better than $\pm 3\times 10^{-3}$ °C/min
Temperature accuracy	< ±0.5 °C (entire temp. range) < ±0.1 °C at 25 °C
Temperature equilibration time after 5 °C step after 10 °C step	typically < 60 minutes typically < 120 minutes

A.2.3 Pump

Flow rate range	1-5000 μl/min (1-100 μl/min user-controlled)
Increment	Steps of 1 µl/min
Flow rate accuracy	< ±2% (1-100 µl/min, liquid at 25°C)
Flow rate precision	< 1% (1-100 µl/min, liquid at 25°C)
Pressure range	< 0.2 MPa

Tubing Inlet (both pumps) PEEK, i.d. 0.75 mm Outlet (continuous flow PEEK, i.d. 0.5 mm Outlet (autosampler) Tefzel, i.d. 0.8 mm

A.2.4 Autosampler

Dispensing volume range	5-500 µl (including air segment)
Increment	Steps of 1 µl
Accuracy	< 1% deviation for volumes ${\geq}50~\mu l$
Precision 50 µl 5 µl	< 0.4% CV < 2% CV
Carry over between vials	typically < 1 μl without septum typically < 0.1 μl with septum
Sample capacity per rack: Microplate* Rack type A	96-well (0.2 ml/well) 5 vials, diam 16 mm (4 ml) 12 vials, diam. 9 mm (1.5 ml) 40 vials, diam. 7 mm (0.7 ml)

Rack type B	60 vials, diam. 9 mm (1.5 ml)
Rack type C	24 vials, diam. 10.8 mm (Eppendorff-type 1.5-2 ml)
Reagent rack	4 vials diam. 10.8 mm 4 vials diam 16 mm
Maximum vial height	55 mm
Optional thermostatting:	¼" connections maximum inlet pressure 0.2 MPa

* Only some brands of microplates are compatible with the autosampler. Contact GE Healthcare for more information.

A.2.5 Integrated µ-Fluidic Cartridge (IFC)

Number of flow cells	4
Valves	Pneumatic membrane valves
Injection volume to flow cell	5 -750 µl, steps of 1 µl
Carry over from previous injection	< 0.1%
Sample loop capacity	120 µl (maximum injection volume 100 µl)

Channel and valve configuration allows access to flow cell 1, 2, 3, 4, 1+2, 3+4 or 1+2+3+4 from loop or injection port.

For injection volumes and sample consumption see Section 4.4.6.

A.2.6 Sample recovery

Volume	2 μl (3-7 μl using MICRORECOVER)
Dilution of recovered sample	see Technical description below

A.3 Technical description

This section describes technical aspects of Biacore 3000 The information here is not required for normal instrument use.

A.3.1 Fuses

External fuses are located in the mains connector on the left side of the instrument and may be replaced by the user. For required fuse ratings, see Specifications above.

Internal fuses are located inside the processing unit. These fuses may only be replaced by approved GE Healthcare service personnel.

A.3.2 LED display

The LEDs on the instrument front panel indicate the processing unit status as follows:

•	READY (green) No light Steady light	Power off The instrument is ready for use
•	Error (red) No light Steady light	OK or power off Unrecoverable hardware error
•	Temperature (Yella No light Steady light Flashing light	ow) Temperature control disabled Detection unit maintained at set temperature Temperature equilibrium not reached
•	Sensor chip (greer No light Steady light Flashing light	n) No sensor chip in position Sensor chip docked and ready Sensor chip in position, undocked
•	Run (green No light Steady light	Biacore 3000 at standby or power off Continuous flow

A.3.3 Detection unit

The optical detection unit uses four separate linear arrays of light-sensitive diodes, one for each flow cell. The spacing between diodes corresponds to a difference of approximately 0.1° in incident light angle. Computer algorithms automatically calculate the angle at which minimum reflection occurs (the SPR angle) with a resolution of about 10^{-5°}.

Constant temperature at the detector is maintained by continuous circulation of air in a thermally insulated box. The temperature is regulated by Peltier elements, which are controlled by temperature sensors in the optical unit close to the flow cells and in the circulated air.

A.3.4 Flow cells

The volume of each flow cell in the IFC is about 0.02 μ l. The total sensor chip area in each flow cell is \approx 1.2 mm² and the flow cell height is 20 nm.

The focused incident light illuminates an area measuring about 1.6 mm along the flow cell (in the direction of flow). The detector array reads reflected light from a width of 0.16 mm across the flow cell.

The dead volume between the inlet valve and the flow cell is $\approx 0.5 \ \mu$ l. In serial injection mode the dead volume is $\approx 0.5 \ \mu$ l to flow cell 1 and an additional 0.3 μ l per subsequent flow cell. This gives a time delay in sensorgrams between flow cells corresponding to about 1 s at 20 μ l/min (see also Section 8.2.2).

For the Surface Prep unit configuration SP_1, each flow cell has a surface area of \approx 1.2 mm² and a height of 100 nm. The large flow cell in Surface Prep unit configuration SP_2 has a surface area of \approx 16 mm² and a height of 50 nm.

A.3.5 Pumps

The two pumps can deliver flow in the range 1-5000 μ l/min. User-controlled flow rates are limited to 1-100 μ l/min. Higher flow rates are used for certain system routines. The pumps are controlled by a stepper-motor which delivers 3 nl/step with a 500 μ l pump syringe.

The pumps are mounted vertically to aid removal of air bubbles at start-up and eluent change. The right side of the valve at the top of each pump is the inlet side. Tubing from the buffer bottle is connected to the inlet of both pumps. The outlet from the continuous flow pump (left side of the valve) is connected to the connector block inlet. The outlet from the autosampler pump is connected to the needle in the delivery arm of the autosampler.

Material for inlet tubing to both pumps and outlet tubing from the continuous flow pump is PEEK, which gives extremely low gas permeability. Outlet tubing from the autosampler pump is Tefzel.

A.3.6 Autosampler

The tubing between needle and pump (ID= 0.8 mm) has a volume of \approx 600 µl and acts as a container for aspirated liquid. The maximum aspirating volume is 500 µl (including air segments). The recommended range is 5-450 µl. The Biacore 3000 Control Software commands (e.g. **DILUTE**, **TRANSFER**, **MIX** and the various **INJECT**s) are designed to maintain 1-3 air segments of about 5 µl.

The volume in the needle is < 6 μ l (ID = 0.3 mm). In order to avoid pressure differences while aspirating/dispensing liquid to a septum-capped vial, an air inlet groove is cut in the needle.

A vial dislodger on the needle positioning arm ensures that vials are not lifted out of position by friction between the needle and the vial septum when the needle is raised.

The positioning work space is $170 \times 104 \times 55$ mm (l $\times w \times h$) (i.e. no vials, including caps, may be higher than 55 mm). Maximum total travel time between any two positions is approximately 3-4 s.

For thermostatting the autosampler rack base, circulate temperature controlled liquid (water or <20% ethanol in water) through the thermostat inlets on the right-hand side of the instrument. The maximum inlet pressure for thermostatting the rack base is 2 bar (0.2 MPa).

Note: At high ambient humidity, condensation may be considerable on cooled parts, and special care should be taken to insulate connecting tubing and connections. Capped vials should be used to avoid condensation in samples.

A.3.7 Thermo-racks

Three types of thermo-racks and one reagent rack are available with vial positions as illustrated below. Note that row f on thermo-rack A has only 7 positions.

Supported microplates have 8 rows (a-h) of 12 positions per row.

Biacore 3000 also comes provided with a MALDI holder. This is a plastic base with similar dimensions to the thermo-racks, which provides support and thermal insulation for software-supported MALDI targets. When used, this must be placed in the left-hand rack position of the autosampler.

A.3.8 IFC

Liquid flow is directed through the IFC channels by pneumatic micro pinch valves operated by air pressure from an internal compressor. Channels from the air bus to the IFC valves are filled with glycerol to prevent diffusion of air from the air bus into the IFC channels.

The IFC channels are molded in silicone plastic. The smallest channel crosssectional area is 0.015 mm², so that a volume flow rate of 10 μ l/min corresponds to a linear flow rate of \approx 1 cm/s.

A.3.9 Automatic preparation and finishing routines

Automatic preparation and finishing routines wash the liquid handling system at the beginning and end of methods, method cycles, manually controlled sensorgrams and injections. The summary below does not include commandspecific operations, such as aspirating sample before an injection and EXTRACLEAN and DIPNEEDLE operations.

Method control	
Start method (MAIN)	Fresh buffer is delivered to IFC and wash station. The flow is set to 10 μ l/min and all IFC valves are opened.
Start method cycle (APROG)	The continuous flow pump is filled and the sample line in the IFC is primed with fresh buffer. Flow rate and flow path are set.
Start injection	Pumps are refilled if required (as estimated from buffer consumption during the injection).
End injection	The needle and IFC sample line are washed.
End method cycle (APROG)	The IFC sample line and flow cells are washed with buffer. Any flow path changes requested with FLOWPATH in the
	Buffer flow is set to 10 µl/min.
End method (MAIN)	The IFC sample line and flow cells are washed with buffer. Flow is set to zero and all IFC valves are opened.
Manual control	
Start sensorgram	A short pulse of buffer is pumped through all flow cells. The needle is washed.
Start injection	Pumps are refilled if required (as estimated from buffer consumption during the injection).

End injection	The needle and IFC sample line are washed.
End sensorgram	All IFC valves are opened.
	Flow is set to zero and pumps are reset to starting position.
	IFC channels are washed if an injection has been performed.

Important notes

Automatic routines are kept to a minimum under manual control to reduce the times taken for sensorgram start/end and injections. It is the user's responsibility to ensure that appropriate wash commands are executed before sample injection under manual control.

Appendix A System specifications A.3 Technical description

Appendix B Application guidelines

Low signal noise coupled with multichannel analysis capabilities give Biacore 3000 excellent sensitivity characteristics, allowing detection and measurement of low molecular weight analytes and weak interactions. Careful experimental design is however needed to exploit this potential to the full. This chapter gives some guidelines for obtaining the best performance from Biacore 3000, and lists method constructions for typical application situations.

Follow the recommendations below for best results in experiments where high sensitivity is required. With suitable precautions, Biacore 3000 can reliably detect relative responses down to 10 RU or even lower. Bear in mind, however, that most applications work well above the limits of sensitivity of the instrument, and will give fully adequate results without extensive tuning of experimental parameters.

B.1 General considerations

The main factors which may interfere with real-time measurement of interaction processes are listed below. Some or all of these factors may be irrelevant for some applications, depending on the application purpose and experimental conditions.

- Sample dispersion, i.e. dilution of sample by mixing with buffer in the autosampler tubing or IFC sample loop. This is minimized by the IFC construction and injection technique, but must be taken into consideration for critical applications. The effects of sample dispersion are illustrated in Section B.5.3.
- Bulk refractive index effects, i.e. difference in bulk refractive index between sample and running buffer. If the sample has a higher refractive index than the buffer, this will give a positive response during injection which may resemble a binding event. A negative bulk effect may conversely obscure binding. On-line reference subtraction helps to minimize the effects of bulk refractive index changes.
- Mass transfer effects, i.e. limitations on the rate of transport of analyte between bulk solution and the sensor chip surface. These effects are deleterious to kinetic measurements but are desirable in concentration assays.
- Matrix effects, i.e. changes in extension of the dextran matrix on the sensor chip surface as a result of changes in pH or ionic strength. The effect of these variations is usually small in terms of absolute response, but may be significant in experiments where highest sensitivity is required. Matrix effects may have time constants ranging from seconds (for e.g. small

changes in pH or ionic strength) to minutes or even hours (larger changes as for example following regeneration with extreme conditions). Matrix effects are normally directly related to the mass concentration of immobilized ligand, with greater effects at higher concentrations.

- Conformational changes in the immobilized ligand resulting from changes in buffer composition. These changes may resemble matrix effects, but are caused by changes in the ligand rather than in the dextran matrix.
- Sample depletion between flow cells in multichannel applications, and in single flow cells for sensitive kinetic measurements.
- Carry-over of sample between injections, between vials or between flow cells.
- Unwanted binding of analyte to the surface (giving a false positive binding) or to the autosampler tubing or IFC channel walls (resulting in sample depletion).
- Temperature drift, which may obscure slow association or dissociation events.

B.2 Types of application

Applications can be broadly divided into two groups, with significantly different requirements in experimental design:

- Applications relying on relative response levels. A baseline is established before the injection, and the response level is measured at a fixed time either during or after the injection. Examples of this type of application are epitope mapping, identification of binding partners and many concentration assays. For these applications, sample dispersion at the beginning and end of the injection is usually irrelevant. If the relative response level can be measured after the injection (dissociation of bound analyte from the surface is slow), bulk refractive index effects are eliminated. Mass transfer effects are generally an advantage for this type of assay.
- Applications relying on measurement of interaction rates, typically determination of kinetic parameters for the interaction or measurement of e.g. enzymatic activity. Here, sample dispersion and bulk refractive index effects should be reduced as much as possible, since these effects will obscure rapid binding and dissociation events. Mass transfer limitations are undesirable, except in rate-based concentration measurement, where mass transfer limitation is an advantage.

Carry-over and non-specific binding are undesirable in both types of application.

For more information on applications relating to analyte recovery and mass spectrometry, contact GE Healthcare.

B.3 Manual versus automated operation

For best performance, always run analyses in automated mode, i.e. under method control or from application wizards. There are a number of routines used in methods and wizards (e.g. liquid system wash at the end of each cycle) which help to ensure high performance and which can easily be missed under manual control. For example, it is natural to run a series of injections in a single sensorgram under manual control, thereby losing the automatic cleaning routines between each method cycle.

In addition, automatic control provides a more complete documentation of the run, since the method or wizard template is saved with the result file.

Use manual control for development work, testing immobilization conditions, ligand level and so on.

Most of the recommendations below assume that analyses are performed under method control.

B.4 Special features of Biacore 3000

The artifacts discussed briefly above can be circumvented or compensated by suitable control experiments in all BIA instruments. However, multichannel analysis in Biacore 3000 offers special facilities for in-line control experiments.

B.4.1 Gradient surfaces

By immobilizing different levels of ligand in several flow cells and then analyzing the interaction of analyte in a single injection over all surfaces, reliable comparisons can be made between interactions at different ligand densities. A series of flow cells prepared in this way is referred to as a *gradient surface* (it is strictly a step gradient surface since the surface is discontinuous between the flow cells).

Gradient surfaces are useful in two contexts:

- In optimizing the ligand density for kinetic measurements and other analyses. A range of ligand densities can be screened with a single injection of analyte, saving sample and time.
- In measuring interactions with low molecular weight analytes or weak binding. The signal from these interactions is often obscured by bulk refractive index effects, either because the response is low or because both association and dissociation are very rapid. Comparison of the

response at different ligand densities can distinguish between binding and bulk refractive index effects, since the former varies with the ligand density while the latter may be taken as constant since it is in the range of a few hundred RU. Comparisons made from single channel measurements are often difficult because of minor variations in the response between separate sample injections.

B.4.2 In-line reference cell

The surface in one flow cell can provide a reference cell in multichannel analyses. This reference may be a blank cell for correction of bulk refractive index effects, temperature drift, non-specific binding etc, or a "functional blank" aimed to eliminate a particular feature of the biomolecular interaction being studied. On-line reference subtraction provides direct display of the blankcorrected results. See Section B.5.5 for practical considerations concerning reference cells.

B.5 Experimental considerations

B.5.1 Sample preparation

In preparing the analyte sample, try to reduce the difference between sample and running buffer composition as much as possible. Differences in refractive index give bulk effects which can obscure rapid binding events. Differences in pH and ionic strength can give matrix effects which may take from seconds to hours to stabilize. The extent of matrix effects (if any) will vary with the nature and amount of the immobilized ligand.

If the sample contains additives such as detergents in known concentration, add the same concentration to the running buffer.

If differences in composition between sample and running buffer cannot be avoided and matrix effects are suspected (seen as a relatively long-term drift in the signal), include a WAIT commands in the APROG to allow signal stabilization. You may also use a reference cell to compensate for the matrix effects. Ideally, the reference cell should contain a control ligand immobilized at the same level as the true ligand. It is otherwise difficult to compensate fully for matrix effects using a reference cell since the extent and rate of matrix effects are sensitive to the amount of immobilized material.

For samples that will be kept for relatively long periods (> 1h) in the autosampler, use capped vials to eliminate both sample evaporation and condensation inside the vials (particularly if the autosampler racks are cooled).

B.5.2 Ligand immobilization

Amount of immobilized ligand

The optimal level of immobilized ligand depends on the purpose of the analysis. In general, use the lowest reasonable level for kinetic analyses to minimize the effect of mass transfer limitations. For concentration measurement, the optimal ligand level is often related to the required dynamic range of the assay.

Preparing gradient surfaces

Gradient surfaces for multichannel applications can be conveniently prepared by using variable contact times for either the surface activation step or the ligand binding step. The choice of which step to vary will depend on the characteristics of the immobilization procedure: with standard amine coupling, varying the surface activation time is generally recommended for controlling the amount of immobilized ligand.

At low flow rates, sample depletion between flow cells can become significant. Flow rates of 20 μl/min or higher during ligand immobilization are recommended to minimize sample depletion.

A gradient surface created using variable contact times in the immobilization procedure has the highest ligand concentration in the first flow cell. It may seem that this would aggravate the problem of sample depletion for kinetic measurements, where accurate knowledge of the analyte concentration is required. However, kinetic measurements use high flow rates and low ligand levels, so that sample depletion is rarely a problem. If you do want to create a gradient surface with the lowest immobilization level in the first cell, perform the immobilization in each flow cell separately.

Immobilizing different ligands for multichannel applications

Multichannel applications may be designed with different ligands immobilized in different flow cells, for monitoring multiple analytes in complex samples. In preparing surfaces of this kind, it is essential to avoid contamination of the surface of one flow cell with ligand from another flow cell. The surfaces should be prepared in separate cycles (either manual runs or separate **APROGs** in a method), the automatic cleaning procedures between cycles will eliminate carry-over.

Note: The apparently convenient technique of activating all surfaces with a single multichannel injection and then injecting the different ligands separately is not recommended since there is significant risk for carry-over of ligands between flow cells. In addition, the delay between activation and coupling should be kept as short as possible since the NHS-esters on a surface activated with EDC/NHS break down over time.

B.5.3 Flow rate

The flow rate influences sample consumption, sample dispersion at the beginning and end of the injection, sample depletion during the injection and mass transfer of analyte to the surface. The optimal flow rate is a function of these three factors in combination. In general:

- Use high flow rates (>30 µl/min) for kinetic experiments to reduce sample depletion and mass transfer limitations.
- Use moderate flow rates (5-20 µl/min) for immobilization and for analyses based on relative response levels to reduce sample consumption.
- For multichannel analyses, use higher flow rates than for the corresponding single channel application, to minimize sample dispersion and depletion effects.
- Remember that you can change the flow rate during a run (either manual or method-controlled) if different parts of the run have different flow rate requirements.

Sample consumption

The determining factor in many injection protocols is the contact time of sample with the surface, determined by the injected volume divided by the flow rate. If sample is limiting, a low flow rate may have to be used to achieve the required contact time. When availability of sample is not critical, however, sample consumption is a secondary consideration and the flow rate should be chosen with respect to the other factors discussed here. It is generally better to dilute the sample and use a larger volume and high flow rate than to use a high concentration and a low flow rate.

Sample dispersion

Sample dispersion refers to mixing between sample and buffer at the beginning and end of the injection. The use of air segments separating sample from buffer minimizes dispersion in the autosampler tubing and sample loop, and the design of the IFC minimizes convective mixing at the boundaries during injection. A certain amount of dispersion is however unavoidable, and may be significant in applications which measure fast binding rates. Dispersion is most strongly influenced by the number of air segments, which differs between different injection commands (see Section 4.4.6).

Dispersion may be measured in terms of the finite rise and fall times in response at the beginning and end of an injection of a sample with a high refractive index (e.g. glycerol or sucrose). Rise and fall times are reduced at higher flow rates (see Figure B-1).

Figure B-1. Illustration of sample dispersion. The values indicate the extent of dispersion that can be expected for an injection of sucrose at different flow rates.

The effects of sample dispersion on bulk refractive index changes can obscure rapid binding and dissociation events at the beginning and end of the injection respectively. In general, the rate constant describing the change from buffer to sample and *vice versa* should be at least 10 times faster than the interaction rate constant for reliable kinetic measurements. Typically, the concentration reaches 99% of the target value in the first flow cell within a volume of about 0.5 μ l, so that the critical time scale is about 2 seconds at a flow rate of 15 μ l/min. Correspondingly faster events can be detected at higher flow rates. In multichannel applications, the rise and fall times are longer in the later flow cells, and flow rates of 30 μ l/min or higher are recommended for kinetic applications on multiple surfaces.

Sample dispersion is most easily visualized in terms of distortion of a refractive index pulse, but it is important to realize that dispersion effects are present even if the refractive index is matched between buffer and sample. Bulk refractive index changes may prevent rapid binding events from being visible in the sensorgram. At least as important however is the effect of sample dispersion on the analyte concentration at the beginning and end of the injection, which can distort the actual binding kinetics by affecting analyte concentration.

Sample depletion

Depletion of analyte from the sample in the flow cell can be significant at low flow rates and high surface binding capacities. Depletion is reduced at higher flow rates: with continuous flow at 30 μ l/min the sample in the flow cell is replenished approximately 25 times/second. As a general guideline, sample depletion for an analyte of molecular weight 50,000 daltons will not exceed 4% per flow cell at 30 μ l/ml.

Sample depletion is rarely a problem in single channel applications, but may be significant in multichannel analyses where the sample passes over several flow cells in series with the same ligand immobilized. In general, use flow rates above 20 μ l/min for multichannel applications to minimize this effect. Sample depletion is proportional to (*flow*)^{-2/3}.

Mass transfer effects

The balance between mass transfer and kinetic limitation of the observed binding rate is influenced primarily by the ligand density and the flow rate:

- For kinetic applications where mass transfer limitations are to be minimized, use a low ligand density and the highest flow rate that is consistent with a reasonable sample consumption.
- For concentration assays where mass transfer limitations are desirable, use as high ligand density and a flow rate that gives mass transfer-limited binding. The assay will then be independent of small changes in ligand activity, and the dynamic range can be controlled directly by varying the contact time.

The low flow cell height in Biacore 3000 contributes to improved mass transfer of analyte to the surface so that mass transfer limitations are reduced in kinetic applications.

Note that the effect of flow rate on mass transfer is relatively small (a 10-fold increase in flow rate gives slightly more than a 2-fold increase in mass transfer rate). Minimizing ligand density is the most effective way of reducing mass transfer limitations.

Other considerations

During extended operation at low flow rates (< 5 μ /min), air bubbles may develop in pump tubing and IFC channels. This problem is aggravated by detection temperatures above room temperature. Run the working tool **Prime** or **Flush** to clear air bubbles from the system after prolonged operation at low flow rates. The problem is less marked at higher flow rates. See Section 8.2.2 for further details of how to minimize problems with air bubbles.

B.5.4 Injection techniques

Biacore 3000 offers a range of application-oriented injection commands as described in Section 4.4.6. These commands differ in capacity (**BIGINJECT**), functionality (**COINJECT**) and the balance of preparation time and injection performance (**QUICKINJECT**, **KINJECT**). Use the command that best suits to your application.

Time-controlled injections

During a method, injections are prepared as soon as the autosampler is available, even if the injection is timed to start at a later point. For example, in the APROG below the injection will be *prepared* as soon as the APROG starts, but will be *started* at time 10 minutes.

DEFINE APROG analyze FLOW 30 10:00 INJECT r1a1 30 END

For applications requiring high injection performance (low sample dispersion) this can be a disadvantage since the sample waits in the autosampler tubing for about 10 minutes and sample dispersion will increase. To avoid this, program a time-controlled autosampler event (e.g. wash the IFC channels) just before the injection:

DEFINE APROG analyze FLOW 30 10:00 WASH s INJECT r1a1 30 END

With this construction, the injection will not be prepared until the wash is complete. Time-control of the actual injection start is less precise (the injection will start at 10 minutes + time for wash + time for preparing the inject), but the residence time of the sample in the autosampler tubing is kept as short as possible. Use the event log to determine the actual time of injection start.

Note: A timed **RPOINT** command cannot be used for this purpose, since **RPOINT** does not occupy the autosampler and the injection will be prepared at the beginning of the **APROG**.

B.5.5 Using a reference cell

Multichannel detection in Biacore 3000allows one cell to be used as an in-line reference, to compensate for bulk refractive index effects, non-specific binding etc. In designing applications with a reference cell to compensate for artifacts, bear the following considerations in mind:

- Use a cell adjacent to the measuring cell as a reference. Adjust the time axis of the reference sensorgram to coincide with the sample cell in BlAevaluation. The delay between adjacent cells in the raw data corresponds to 0.3 µl liquid (2 seconds at 10 µl/min).
- If possible, immobilize a "neutral" molecule in the reference cell at the same level as in the sample cell. Choose a molecule with similar molecular weight and charge characteristics to the ligand. This will help in using the reference cell to compensate for matrix effects.

B.5.6 Reducing carry-over

The term "carry-over" includes a number or potential artifacts:

- transfer of sample between successive injections.
- transfer of sample or buffer between different vials.
- transfer of sample between flow cells.
- incomplete regeneration of the surface.
- leakage of contaminants from surfaces in the liquid handling system.

In general, the first few analysis cycles with a new surface are more sensitive to carry-over and "memory effects" than later cycles when the surface has stabilized. It is often advantageous to run one or more blank analysis cycles (complete cycles including regeneration – use buffer in place of sample if sample is valuable) after preparing a new surface.

Carry-over between injections

This may be reduced by the correct choice of injection command (e.g. do not use **QUICKINJECT** if avoidance of carry-over is essential). Carry-over in the autosampler needle may be further reduced by using the **DIPNEEDLE** command between injections. To eliminate carry-over arising from residual sample in the IFC channels, include an **EXTRACLEAN** command after each injection.

Carry-over between vials and from running buffer

In applications that perform many injections from the same vial, use septumcapped vials and perform a **DIPNEEDLE** in a vial containing the sample buffer before each injection.

Carry-over between flow cells

The flow cells in the Biacore 3000 IFC are not physically separated by valves on both sides, so that samples injected over long periods into one flow cell will gradually diffuse into the adjacent flow cell. For small molecules (< 1000 daltons), about 1% carry-over has been observed after 30 minutes. Levels will be correspondingly lower for larger molecules with lower diffusion constants. To minimize the effect of this diffusion:

- Do not use variable contact time injections with more than 30 minutes difference in contact time between adjacent cells.
- Include an EXTRACLEAN command before changing the flow path to wash unwanted sample out of the connecting channels between flow cells.
- If you are analyzing or exploiting enzymatic reactions on the sensor surface, avoid single flow cell analyses where the adjacent flow cell also has enzyme-sensitive material immobilized. It is very difficult to eliminate diffusion of active levels of enzyme between adjacent flow cells.

 Certain small molecules (e.g. ethanol and other alcohols in low concentrations) appear to diffuse quite easily between flow cells. Do not use higher concentrations than necessary of low molecular weight compounds. We do not recommend multichannel applications where sensitive ligands (e.g. lipid structures which may be disrupted by ethanol) are immobilized in several channels but analyzed in one channel at a time.

Carry-over between cycles

Analyte carry-over between analysis cycles generally indicates insufficient regeneration of the surface, and is generally restricted to sandwich assay techniques for concentration measurement. Note that concentration measurements performed under mass transfer-limiting conditions are insensitive to the amount of ligand and are therefore not affected by small amounts of carry-over between cycles. Optimize the regeneration conditions to minimize carry-over.

Carry-over from IFC channels

Certain compounds tend to adsorb to the IFC channel walls and leak out in subsequent injections. One example is formic acid, which is used in some regeneration protocols. If you suspect that carry-over from the tubing and/or IFC channels is a problem, wash the IFC with a WASH i command and then use a WAIT command to allow buffer flow until the baseline is stable after exposure to the compound in question. Run **Desorb** at least every week if biomolecules from samples adsorb to the IFC walls and interfere with analyses.

In clearing carry-over from the IFC channels, time is often more important than the washing volume, since dissolved materials leach out at a characteristic rate. A useful test of carry-over is a so-called "zero injection", i.e. an autosampler transfer and injection using buffer instead of sample:

```
DEFINE APROG zero_inject
FLOW 30
WASH n !wash needle
TRANSFER B r1a1 450 !'B' is buffer
INJECT r1a1 30
END
```

Use a new glass vial with a septum for the transfer and inject position. With physiological salt concentration in the buffer, a response of about 10 RU from a zero injection is not uncommon, and can be traced to salt deposits on the needle.

B.5.7 Temperature changes

A programmed temperature increase of 5°C takes about 1 hour to stabilize. The equilibration time for cooling by the same interval may be somewhat longer, and depends more on the ambient temperature. Increasing the temperature

above ambient can cause problems with formation of small air bubbles in the buffer flow, particularly at $>30^{\circ}$ C. As a general recommendation:

- For temperature dependence studies below ambient, start at the lowest temperature to minimize equilibration time.
- For temperature dependence studies above ambient, degas buffer thoroughly before use and start at the highest temperature to minimize air bubble problems.

The TEMP command in a method causes the system to wait until the temperature is stable before continuing the analysis. The TEMP command can only be used in the MAIN block in a method, so that temperature changes can only be programmed between cycles. The flow rate is set to 10 by the system between cycles.

For best results include **RINSE** or **PRIME** and **NORMALIZE** directly after the **TEMP** command to clear air bubbles from the flow system and normalize the signal response.

If low baseline drift is important for the application, include a timed WASH command at the beginning of the APROG to allow for stabilization of the signal at the new flow rate.

The example below illustrates these features in a method for temperature dependence analysis in single channel mode. Note that the MAIN block includes a PRIME command to clean the system thoroughly and a NORMALIZE command to reset the detector at each new temperature. By starting the method with the detector temperature close to the setting for the first cycle, the temperature equilibration delay before the first cycle is minimized.

The method will abort if NORMALIZE fails.

DEFINE APROG analysis FLOW 25 10:00 WASH s ! 10 minutes stabilization ... END DEFINE LOOP temp_series LPARAM %degrees TIMES 1 5 10 15 ... END

```
MAIN

! Start method at 5°C or below

LOOP temp_series STEP

TEMP %degrees

PRIME

NORMALIZE r2f1 ! glycerol position

APROG analysis

ENDLOOP
```

```
END
```

B.5.8 Regeneration

Effective regeneration is necessary to eliminate carry-over of analyte between analysis cycles.

With the multichannel IFC construction in Biacore 3000, it is important to wash the IFC channels thoroughly after regeneration, to avoid carry-over of regeneration solution to the next injection. Two precautions are recommended:

- Place the regeneration injection last in the APROG, so that the automatic cleaning routines at the end of each cycle wash out any residual regeneration solution.
- Include an EXTRACLEAN command after the regeneration injection for added security. This is particularly important if the interaction being studied is sensitive to low concentrations of regeneration solution.

If carry-over of regeneration solution between cycles is a persistent problem in spite of these precautions, include a **PRIME** command in the **MAIN** block just before each **APROG**.

Remember that regeneration solutions can cause relatively slow matrix effects in the ligand surface, which can cause baseline drift at the beginning of each cycle. Introduce a WAIT command at the beginning of the APROG to allow baseline stabilization if this is a problem.

B.5.9 Washing the liquid handling system

During normal operation, the liquid handling system is washed automatically at the end of each cycle where the autosampler is used. For high performance work, there are a number of additional washing facilities:

- BYPASSWASH washes the IFC flow channels but not the flow cells. This is
 primarily intended for use together with MICRORECOVER (see Section E.4.4).
- WASH n washes the autosampler needle.
- WASH s washes the injection channel in the IFC.
- WASH I washes the sample loop (only relevant with COINJECT).

- WASH f washes the flow cell area in the IFC.
- WASH i washes the injection channel, sample loop and flow cell area in the IFC. The process of washing the flow cell area may cause baseline disturbances.
- **FLUSH** and **PRIME** wash the pump tubing and IFC channels at a high flow rate. This can help to remove air bubbles trapped in the system.
- EXTRACLEAN performs an additional wash of the IFC channels immediately after an injection and may be used to minimize carry-over between injections.

The WASH command can be used either in the MAIN block or in an APROG in a method. FLUSH and PRIME may only be used in MAIN. EXTRACLEAN must be placed immediately after an injection and may only be used in an APROG.

Appendix C Chemical resistance and recommended solutions

This appendix contains chemical resistance information for Biacore 3000 components together with recommended buffers and solutions.

Safety material charts for the chemicals in the Amine Coupling Kit are included.

Chemical abbreviations which are not explained in this appendix may be found in the Biochemicals, Organic Compounds for Research and Diagnostic Reagents catalogue from Sigma Chemical Company, St Louis, Mo, USA.

Terminology

Continuous flow means that the substance is harmless to the system and may be used regularly.

Pulse means that Biacore 3000 can be exposed to the substance for short periods of time separated by buffer or water wash. Resistance has been verified for the sensor chip by injections of up to 50 pulses of 3 min and for the IFC by immersion for up to 30 minutes.

Some solutions can cause relatively slow matrix effects in the ligand surface, which can cause baseline drift at the beginning of each cycle. Introduce a WAIT command at the beginning of the APROG to allow baseline stabilization if this is a problem.

C.1 General chemical resistance

The table below lists some of the most common solutions used for Biacore 3000 applications are found. The table may be used as a guide for usage of other substances similar to the ones listed. Resistance to chemicals at higher concentrations than those specified in the table is not guaranteed.

Sparing use of organic acids and alcohols is generally recommended. However, formic acid at concentrations up to 70% and ethanol at concentration up to 70% can be used in short pulses. For solutions with *short-term* compatibility, do not use as running buffer or for injections longer than 10 minutes. Solutions classed as *long-term* compatible may be used as running buffer.

Solution	Concentration	Compatibility
Acetonitrile	50%	Short term
Dimethyl formamide (DMF)	50%	Short-term
Dimethyl sulfoxide (DMSO)	50% 10%	Short-term Long-term
Ethanol	70% 10%	Short-term Long-term
Ethylene glycol	50%	Short-term
Formic acid	70%	Short-term
Formamide	40%	Long-term

C.2 Buffer solutions

The choice of buffer used in an application depends on the properties of the interactants and with the aim of the experiment. This section lists examples of buffers suitable for use with Biacore 3000. The table may be used as a guide when designing methods.

Note: Buffers containing primary amines should be avoided for the amine coupling reaction.

Solution	Concentration	рН	Resistance
ACES	50 mM	6.8	continuous flow
ADA	50 mM	6.6	continuous flow
Barbital+ANS+P20	75 mM/20 mM/ 0.005%	8.6	pulse
BES	50 mM	7.1	continuous flow
BICINE	50 mM	8.3	continuous flow
BIS-TRIS	50 mM	6.5	continuous flow
BIS-TRIS- PROPANE	50 mM	9.0	continuous flow
Borate	100 mM	8.8	continuous flow
CAPS	50 mM	10.4	continuous flow
CHES	50 mM	9.3	continuous flow
Citrate	50 mM	3.0	continuous flow
EPPS	50 mM	8.0	continuous flow
Glycine	50 mM	2.3	pulse
Glycine	50 mM	9.6	continuous flow
HEPES	50 mM	7.5	continuous flow
MES	50 mM	6.1	continuous flow
MOPS	50 mM	7.2	continuous flow
MOPSO	50 mM	6.9	continuous flow
Phosphate	50 mM	7.5	continuous flow
PIPES	50 mM	6.8	continuous flow
POPSO	50 mM	7.8	continuous flow

TAPS	50 mM	8.4	continuous flow
TAPSO	50 mM	7.6	continuous flow
TED	50 mM	7.5	continuous flow
TES	50 mM	7.5	continuous flow
TRICINE	50 mM	8.1	continuous flow
TRIS-HCI / ANS / P20	75 mM/5 mM/ 0.05%	8.0	continuous flow
TRIZMA BASE	50 mM	8.1	continuous flow

C.3 Regeneration solutions

This section lists regeneration solutions that are compatible with Biacore 3000. Regeneration conditions should be chosen with respect to the chemical properties of the immobilized ligand.

Solution	Concentration	рН	Resistance
Acetonitrile	20%	7.5	pulse
Acetonitrile in sodium hydroxide	20%/100 mM	10.4	pulse
Hydrochloric acid	100 mM	1.3	pulse
Ethanol	70%		pulse
Ethanol	25%		pulse
Ethylene glycol	50%	10	pulse
Formic acid*	70%		pulse
Glycine	1.5 M	2.5- 3.5	pulse
Phosphoric acid	100 mM		pulse
Sodium carbonate	200 mM	11.5	pulse
Sodium chloride	1 M		continuous flow
Sodium hydrogen carbonate	100 mM	9.2	continuous flow
Sodium hydroxide	250 mM		pulse
Sodium hydroxide + sodium chloride	100 mM/3 M		pulse

* 70% formic acid may dissolve to some degree in the IFC channel walls and leach out in subsequent injections. If formic acid is used for regeneration, be sure to wash the system until the baseline is stable before performing the next injection.

C.4 Disinfectants

Sanitization should be performed for decontamination after exposure to infectants and before storing the system to inhibit bacterial growth during storage. Choose a disinfectant which has the best effect on the type of contaminating material at hand. Be aware that the sanitization procedure may destroy the sensor chip.

Solution	Concentration	рН	Resistance
Ethanol	70%		pulse
Chlorhexidine	0.0002%		pulse
Chlorobutanol	0.05%		pulse
Germall II			pulse
Glycine/lithium sulfate	0.1 M/0.033 M	2.5	pulse
Sodium hydroxide	0.1M	13.0	pulse
Sodium hypochlorite	5%		pulse

Appendix D Status and event log messages

D.1 Status window messages

This section lists messages which may appear in the status window and which require explanation or user action. Self-evident messages like *Method running* are not listed.

Not Connected to Instrument

This instance of the software is not connected to the instrument. This is normal for second or subsequent instances of the software, and for instances started from Windows Explorer (see Section 4.1.2).

Instrument Offline

The software has attempted to connect to the instrument but has failed. This typically occurs if the instrument is turned off or the communication cable is not properly connected. Connection will be established automatically if the communication error is rectified.

Instrument Disconnected

The software has been logically disconnected from the instrument and will not try to establish a new connection. This is normally caused by pressing Ctrl-Break (Abort) during self-diagnostics or by an invalid hardware configuration in PC or instrument. This message is normally preceded by an explanatory message in a message box.

Performing Self Diagnostics

This message appears when the control software is started and establishes connection with the instrument.

Instrument Self Diagnostics Failed

Validation of instrument software and configuration or the resulting automatic program loading failed. This may be caused by instrument startup failure and/or invalid instrument software. The software has no connection to the instrument.

Initiating System

When connection has been established and instrument software validated the software is initialized according to the currently connected instrument. This initial is at ion includes verifying that the hardware configuration (in the PC) corresponds with instrument configuration. Appendix D Status and event log messages D.2 Event log messages

Initialization failed

The control software initialization failed. The software will be connected to the instrument, but system control may be unreliable. The problem should be identified and corrected before the instrument is used. The message will remain displayed until the software is closed or a connection is successfully initialized.

D.2 Event log messages

This section explains the messages which may be entered in the event log. Messages are listed in alphabetical order.

Connection lost

Indicates that the run was terminated because connection between the PC and the instrument was lost.

Data collection

Records the data collection rate in Hz at the beginning of the method cycle or manual sensorgram and when a change in data collection rate is requested.

Data reduction in sensorgram

Indicates that data reduction has occurred in the sensorgram from the specified flow cell. See Section 9.8 for a description of data reduction.

Detection mode

Identifies single- or multichannel detection mode. Note that this is independent of the flow path.

Dilute: End

Indicates completion of a dilute operation.

Dilute: Start

Indicates the start of a dilute operation. The final concentration and source and destination positions are recorded (e.g. Dilute: Start 30% RIA1+R1A2->R1A3 indicates that position r1a3 will contain a mixture of 60 µl from r1a1 and 140 µl from r1a2).

Dissociation: Ready

Indicates the end of the dissociation time specified in a KINJECT command.

End OPERATION

Indicates completion of an injection requested from the manual control interface, including the automatic clean-up routines following the injection. Note that **End INJECT** does not indicate the end of the actual sample injection (see **Inject: Ready**).

<Error messages>

Software errors are recorded in the event log with the appropriate information. Errors arising in the instrument microprocessor are documented by exit codes. Errors arising in the control software are described by a text message.

Flow

Indicates the current flow rate for continuous flow.

Flow path

Indicates the current flow path. Note that this is independent of the detection mode.

Flowfill:Ready

Indicates the end of a pump refill operation. Normally 6-7 seconds after *Flowfill:Start*.

Flowfill:Start

Indicates the start of a pump refill operation.

Inject: Accumulated Volume

Records the accumulated injected volume for a manual injection. This message is generated whenever the loop is reloaded and at the end of the injection.

Inject: Ready

Indicates the end of sample injection over the sensor surface. The volume of sample injected is recorded. The type of injection command is recorded for injections performed under manual control.

Inject: Start

Indicates the start of sample injection over the sensor surface. The flow cell for which the injection applies and autosampler position for the sample are recorded. For a variable contact time injection in multichannel mode, an *Inject: Start* message is recorded as each successive flow cell is switched into the flow path. The type of injection command is recorded for injections performed under manual control.

Appendix D Status and event log messages D.2 Event log messages

Inject: Stop

Indicates that an injection was stopped by the user in manual control. The volume of sample injected is recorded. The type of injection command is recorded for injections performed under manual control.

Load Loop: End

Indicates completion of a loop loading operation.

Load Loop: Start

Indicates the start of a loop loading operation (manual injection only). The loading volume and autosampler position are recorded (e.g. *Load loop: Start 80 µl R1A1*).

Low data quality

Indicates low data quality in the sensorgram from the specified flow cell (see Section 8.1.2). This message is only displayed in the extended event log.

Mix: End

Indicates completion of a mix operation.

Mix: Start

Indicates the start of a mix operation. The mixing volume and autosampler position are recorded (e.g. *Mix: Start 120 µl R1A1*).

Normal data quality

Indicates that data quality has returned from low to normal in the sensorgram from the specified flow cell (see Section 8.1.2). This message is only displayed in the extended event log.

Run aborted

Indicates that the user aborted the run by pressing Ctrl-Break (see Section 4.4.12).

Set temperature

Records the requested measuring temperature at the time the request is made. No record is entered if the requested temperature is the same as the actual temperature.

Start <injection>

Indicates the point at which the user requested an inject command in the manual control interface. The type of inject command is recorded in the message. Note that *Start INJECT* does not indicate the start of the actual sample injection (see *Inject: Start*).

Temperature

Records the actual measuring temperature at the beginning and end of the method cycle or manual sensorgram.

Temperature stable

Indicates that the measuring temperature has become stable.

Temperature unstable

Indicates that the measuring temperature has become unstable.

Terminate run

Indicates that the run was terminated as a result of a control software error.

Timestamp

Records the date and time at the beginning of the method cycle or manual sensorgram.

Transfer: End

Indicates completion of a transfer operation.

Transfer: Start

Indicates the start of a transfer operation. The volume transferred and the source and destination positions are recorded (e.g. *Transfer: Start 80 \mul R1A1->R1A2*).

Wash: <item>

Indicates the start of a wash operation.

Wash:Ready

Indicates the end of a wash operation.

Appendix D Status and event log messages D.2 Event log messages

Appendix E Writing Biacore 3000 methods

Operation of Biacore 3000 can be controlled from the PC through *methods*, written in the Method Definition Language (MDL). The language gives full control over pre-programmed Biacore 3000 operation.

Methods are written as text files, and may be created or modified with any text editor. Biacore 3000 Control Software includes a method editor, similar to Windows Notepad but augmented with some extra features specifically designed to help in writing methods.

Like all programming languages, MDL requires exact syntax (keywords must be spelled correctly, words must be separated by spaces and so on). As an aid to getting methods right, there is a pre-run facility which checks through a method for syntax errors without actually controlling instrument operation. In this way, valuable samples and instrument time need not be lost as a result of syntactically incorrect methods. Methods are always checked for syntax errors before they are run.

This chapter describes how to write Biacore 3000 methods in MDL. Appendix F provides a full reference to MDL.

E.1 Basic method programming

This section covers the basic requirements for writing methods in MDL. If you are already acquainted with programming techniques, these principles will be largely familiar to you. If you are new to programming, on the other hand, read this section carefully – it will help you to avoid many errors in your methods!

E.1.1 Language syntax

Commands in MDL consist of keywords, parameters and options.

Keywords are words which are strictly defined in the language, such as **FLOW**: they must always be written out in full, exactly as specified in Appendix F. Keywords which are incorrectly spelled cause an "Unrecognized command" error when a method is prerun. Keywords are written in Appendix F in uppercase letters to identify them as such, but the case used in methods does not matter.

Parameters are values which qualify the action of a command, such as "30" in the command **FLOW 30**. Parameters always follow the keyword for the command to which they apply.

Some commands may also be qualified by *options*, such as "-f" in the command **FLOW 30-f** (this option refills the buffer pump). Options generally stand for less commonly used functions.

Permitted values for parameters vary for the different commands. Some commands, like FLOW, require a numerical parameter: others, like INJECT (to position the autosampler needle) require an autosampler rack position specification followed by a number. Permitted values for the parameters for each command are listed in Appendix F.

Each command (keywords with parameters) in a method must be written on a new line, and contained entirely on the line. You can leave blank lines between commands or method blocks if you wish. Within a command, keywords and parameters must be separated from each other by at least one so-called "white-space" character (i.e. space or tabulator character). It does not matter how many white-space characters you use.

E.1.2 Constants and variables

Parameters are values supplied to commands, as explained above. It is most natural to provide these values directly as numbers or character sequences, such as FLOW 30 or INJECT r1a1 10. These values are called *constants*.

Methods are more flexible if *variables* are used instead of constants. A variable is a placeholder for a value, which is assigned an actual value in the current context of the method. For instance, the command INJECT %sample %vol, where %sample and %vol are variables, will inject a volume defined by the value currently assigned to %vol from the position identified by the value currently assigned to %sample.

Variable names

You choose your own names for variables, with the following restrictions: names may be up to 30 characters long, and contain any of the (English) letters a-z and A-Z, the digits 0-9, and the special characters %, _ and &. Names may not begin with a digit or underscore character. Note that names may not contain spaces. Use underscore characters instead of spaces in names, like %mixing_position or %flow_rate.

Command keywords, like FLOW and INJECT, should not be used as names.

A useful convention, followed in this manual, is to start all variable names with a special character such as %. This serves two purposes: there is no risk that you will confuse keywords and variable names (no keywords begin with %), and it is easy to see in a method file which words are variable names.

E.1.3 Comments

You can add comments to your method to help you understand what it is meant to do. Comments are introduced by an exclamation mark (!) and consist of all characters from the exclamation mark to the end of the line. Comments may be written on the same line as commands or on separate lines. You can also use an exclamation mark to remove commands temporarily from a method. Compare the two method fragments below (refer to Appendix F if you want to understand the details of the command formulations):

TRANSFER r2a1 r2b1 10 MIX r2b1 200 INJECT r2b1 25 Transfer 10 µl from position r2a1 to r2b1, mix in r2b1 by aspirating and dispensing 200 µl, then inject 25 µl. TRANSFER r2a1 r2b1 10 INJECT r2b1 200 INJECT r2b1 200 INJECT r2b1 25 Transfer 10 µl from position r2a1 to r2b1, then inject 25 µl immediately. The MIX command is INJECT r2b1 25 NOW a comment and does nothing.

E.2 Method blocks

Biacore 3000 methods are divided into a number of separate sections or blocks. There are 5 block types, each with a defined function in the method:

Block keyword	Function
DEFINE ALERT	Gives the user a chance to terminate or continue the method.
DEFINE APROG	(Analysis program.) Defines the sequence of operations in one run or series of runs. A sensorgram is collected and analyzed.
DEFINE LOOP	Defines the parameters to be used for the repeated operations in a LOOP block.
DEFINE MESSAGE	Displays a message on the screen.
MAIN	Defines the sequence of block execution in a method.

The beginning of a block is defined by a line containing the block keyword and any parameters that may be required. The end of each block is identified by a line containing the single keyword END. All other commands must be written within blocks: in other words, there may only be comments or empty lines between the END terminating one block and the block keyword starting the next.

The MAIN block is required in every method, and may only occur once. All other blocks are optional, and may occur as many times as required. Different blocks of the same type are identified by names.

The order in which blocks are written in a method does not matter.

Appendix E Writing Biacore 3000 methods E.3 Constructing methods

E.3 Constructing methods

This section shows you how to construct fairly simple methods using MDL, to give you a feel for how to write methods. The examples in Appendix B illustrate complete methods using a range of MDL commands.

E.3.1 The MAIN block

The MAIN block defines the sequence of operations in the whole method. This is the only required block in a method, and is the only block which may not be used more than once.

The MAIN keyword is not followed by any parameters. The end of the MAIN block is identified by the END keyword.

Most commonly, the MAIN block calls a series of APROGs (see Section E.3.2) which constitute the "body" of the method. The MAIN block can also set the detection mode and the default flow path for the APROGs with the DETECTION command (see Section E.4.1 for more details).

```
MAIN
DETECTION 2
APROG immob
END
```

E.3.2 The analysis program – DEFINE APROG

Simple analysis programs

The sequence of operations for one cycle is written in a **DEFINE APROG** (*analysis program*) block. A method may contain any number of **DEFINE APROG** blocks. Each one is identified by a unique name.

A very simple example sets the flow rate to 20 μ l/min and injects 20 μ l sample from position r2a1:

DEFINE APROG injection FLOW 20 INJECT r2a1 20 END

An APROG is **not** a complete method: it is executed from the MAIN block by writing the command APROG followed by the identifying name (Section E.3.1):

```
MAIN
DETECTION 1
APROG injection
END
```

The complete method is these two blocks together:

```
DEFINE APROG injection
FLOW 20
INJECT r2a1 20
END
MAIN
DETECTION 1
APROG injection
END
```

Note that the DEFINE APROG block starts with a FLOW command, to set the flow rate. *Every* APROG *must set the flow rate at the beginning of the* APROG.

Every **APROG** starts with an automatic initiation sequence that refills the buffer pump if necessary and starts sensorgram recording, and ends with a termination sequence that washes the autosampler needle and IFC channels and resets all IFC valves.

A MAIN block can call more than one APROG to run multiple analysis cycles. Each APROG represents one cycle in the method and generates one or more sensorgrams depending on the detection mode. The example below immobilizes a ligand to the sensor chip surface using amine chemistry, then injects analyte sample over the ligand surface:

DEFIN	E APROG imn	hob	
	FLOW	10	
	DILUTE	r1a1 r1a2 r1a3 50	!Mix EDC/NHS
*	INJECT	r1a3 70	Inject EDC/NHS!
-0:30	RPOINT	Baseline -b	
	DIPNEEDLE	r1b1	Ligand buffer
	INJECT	r1b2 70	!Ligand
*	INJECT	r1c1 70	!Deactivation
	EXTRACLEAN	1	
8:00	RPOINT	immob	Immobilized level!
DEFIN	E APROG inje	ction	
	FLOW	20	
	INJECT	r2a1 20	
END			
MAIN			
	DETECTION	1	Detection in Fc 1
	APROG imm	ob	
	APROG inject	tion	
END			

Using variables

To make the APROG more flexible, you can use variables instead of constant values for e.g. sample positions and volumes. The variables are replaced by values when the APROG is called from a MAIN block (see below).

To use variables in the **DEFINE APROG** block, you replace the constant parameter values with variable names. At the same time, you must add one or more **PARAM** commands immediately after the **DEFINE APROG** line, to tell the software which variable names you will use in the analysis program. For example:

```
DEFINE APROG injection

PARAM %position %volume

FLOW 20

INJECT %position %volume

END
```

Note that a constant is used for the flow rate in this example, while variables are used for sample position and volume.

To use an analysis program with variables, add the values that you want to give the variables to the APROG command line, after the name of the program. For instance, using the following method will inject first 20 μ l from position r1a1, then 35 μ l from position r2a5:

```
DEFINE APROG injection
PARAM %position %volume
FLOW 20
INJECT %position %volume
END
MAIN
```

```
DETECTION 1
APROG injection r1a1 20
APROG injection r2a5 35
END
```

The order in which you give the parameter values in the APROG must be the same as the order in which they are specified in the PARAM command(s) within **DEFINE APROG.** The first value is assigned to the first variable name, the second value to the second variable name and so on.

You can use the same variable names in several different APROGs within the same method. The names are *local* to the APROG. You cannot on the other hand use the same name for two different variables within the same APROG.

Setting the sensorgram caption

The CAPTION command allows you to set a caption text for your sensorgram. You can use a variable name as part of the caption (or as the whole caption if appropriate). The example below sets the text "Injection of ... μ I" as the sensorgram caption, with the respective sample volume filled in for each sensorgram:

```
DEFINE APROG injection
PARAM %position %volume
CAPTION Injection of %volume µl
FLOW 20
INJECT %position %volume
END
MAIN
DETECTION 1
APROG injection r1a1 20
APROG injection r2a5 35
END
```

Timed events in analysis programs

So far, the **APROG** examples have executed commands in a straightforward sequence. One command starts as soon as the previous command is completed.

You can specify the time when a given command will start, relative either to the beginning of the analysis program or to some defined point within the program. You do this by putting a time specification before the command:

In this APROG, the two injections will be performed 50 seconds and 6 minutes respectively after the start of the APROG.

A command with a time specification is executed at the time specified **or as soon as possible thereafter**. In the APROG above, for example, the first injection occupies the autosampler for about 4 minutes. If the second injection were timed to start at 3 minutes (impossible since the autosampler is occupied), the second injection would be performed as soon as the first was completed. Time specifications in APROGs are thus *minimum* times, and do not necessarily represent the time of execution of the command. The actual time when the command is executed is recorded in the event log. To set an injection, transfer or mixing time as a new zero time point within a program, put an asterisk (*) before the time specification. *Do not type a space between the asterisk and the time specification*.

DEFINE A	PROG injection	
	FLOW 20	! time 0
*0:30	INJECT r1a1 20	! start at 30 s
5:00	INJECT r1a2 30	! start 5 min after first inject
END		

Here the second injection is timed to start 5 minutes after the beginning of the first injection.

You cannot use variables for time specifications.

Creating report tables

MDL gives you full freedom in creating report point tables (lists of SPR signal levels at specified times – see Section 9.2.4) from sensorgrams. You specify the contents of your report table through commands in the analysis program.

Report points are set with the **RPOINT** command, which should always be preceded by a time specification (otherwise the software does not know when to set the point). The command keyword is followed by an identification, which appears in the "Id" column in the report point table. A commonly used option with **RPOINT** is **-b**, which sets a new baseline at the report point. A simple example follows:

DEFINE A	PROG report	
	FLOW 20	
*	INJECT r1a1 10	! set this as time 0
-0:15	RPOINT baseline -b	! set baseline
0:30	RPOINT plateau	! record plateau level
END		

Note the negative time specification for the first **RPOINT**, setting the report point to 15 s *before* the first injection. This is often a convenient way to set report points relative to an event.

A report point table will always contain a minimum standard set of columns. You can specify additional columns with the **KEYWORD** command, which requires a header for the column and a value to be placed in the column. The **APROG** below will generate a report point table with an additional column headed "Antibody" containing the value "MAb-451". In addition, the keyword "Antibody" will be included as a search key in the result file.

DEFINE APROG report

KEYWORD Antibody MAb-451

- FLOW 20
- * INJECT r1a1 10
- -15 RPOINT baseline -b ! set baseline
- 30 RPOINT plateau ! record plateau level

! set this as time 0

END

The **RPOINT** and **KEYWORD** commands can use variables to help in documentation of the report point table.

E.3.3 Repetitive analyses – DEFINE LOOP

Basic loop constructions

The LOOP command and corresponding DEFINE LOOP block allow you to construct methods for series of repetitive analyses.

The following method analyses four different samples in duplicate – a total of 8 runs. We assume that ligand has previously been coupled to the sensor chip surface:

DEFINE L	00P cycle			
	LPARAM TIMES 2	%sample	%position	%volume
		Sample1	r1a1	10
		Sample2	r1a2	15
		Sample3	r1a3	10
		Sample4	r1a4	20
END				
DEFINE A	PROG and	llyze		
	PARAM %	sample %pc	sition %volur	ne
	KEYWOR	D sample %s	ample	
	FLOW 20			
* INJECT %position %volume				
-0:15	RPOINT b	aseline -b		
2:00	RPOINT p	lateau		
5:00	INJECT r2	2a1 10 !	regenerate	
END			•	
MAIN				
	DETECTIO	DN 1		
	LOOP cyc	le STEP		
	APRO	G analyze %s	ample %posi	tion %volume
	ENDLOOP	D Í	•	
END				

The essential features of this construction are as follows:

- Variables are defined with the LPARAM command in the DEFINE LOOP block. This block establishes sets of variable values (4 sets of 3 variables each in this example). The TIMES 2 command in DEFINE LOOP specifies that the loop will go through the variable sets twice.
- The same variable names are set up as parameters for APROG analyze using the PARAM command in DEFINE APROG.
- In the MAIN block, the LOOP cycle...ENDLOOP construction executes the commands between LOOP and ENDLOOP once for every variable set in DEFINE LOOP cycle. In this example, the commands will be repeated 8 times (4 variable sets with a TIMES 2 repeat). Variables defined in the DEFINE LOOP block can be used as parameters for any command in the LOOP...ENDLOOP construction (in this case they are passed to APROG analyze).

The LOOP command in the MAIN block specifies one of the keywords STEP, ORDER or RANDOM. These determine the order in which the rows in DEFINE LOOP are processed:

- **STEP** goes through the first row once, then the second row once and so on to the end, then repeats the cycle (samples 1, 2, 3, 4, 1, 2, 3, 4).
- **ORDER** goes through all repeats of the first row, all repeats of the second row, and so on to the end (samples 1, 1, 2, 2, 3, 3, 4, 4).
- **RANDOM** processes the rows in a random order. This is particularly useful for avoiding systematic effects in extensive series.

You can vary the number of replicate analyses within a DEFINE LOOP simply by adding more TIMES commands. The TIMES number applies to all subsequent rows in the DEFINE LOOP until a new TIMES is set.

DEFINE LOOP cycle LPARAM %sample %pos %vol TIMES 2 ! do the following rows twice Sample1 r1a1 10 15 Sample2 r1a2 Sample3 r1a3 10 TIMES 1 ! do the last row only once Sample4 r1a4 20

END

Repeating multiple commands

In the examples above, the LOOP command activates just one analysis program. You can however include any command which is permitted in MAIN within a loop. The whole command sequence between LOOP and ENDLOOP will be repeated for the rows in DEFINE LOOP. The example below uses a loop construction to run a sample through different flow cells in four separate injections with a different injection volume in each flow cell:

DEFIN	E APROG (analyze	2		
	IN IFCT r1a1 %volume				
END					
DEFIN	E LOOP flo	wcells			
	LPARAM	%cell	%volume		
	TIMES 1				
		1	10		
		2	20		
		3	30		
		4	40		
END					
MAIN					
	LOOP flow DETEC APROC	vcells S TION 9 G analy	STEP %cell /ze %volume		
END	ENDLOOF)			

Advanced LOOP constructions

Loop constructions can be *nested*, that is a loop can be called from within another loop. This technique is particularly useful for applications that work with a matrix of samples, testing all pair-wise combinations (e.g. epitope mapping). The example below runs a 3×3 matrix, with the samples A, B and C in positions r1a1-r1a3.

DEFINE LOOP cycle1			
LPARAM	%s1	%p1	
	Α	r1a1	
	В	r1a2	
	С	r1a3	
END			
DEFINE LOOP cy	/cle2		
LPARAM	%s2	%p2	
	Α	r1a1	
	В	r1a2	
	С	r1a3	
END			

```
MAIN

DETECTION 1

FLOW 20

LOOP cycle1 STEP

LOOP cycle2 STEP

APROG analyze %s1 %s2 %p1 %p2

APROG regenerate

ENDLOOP

ENDLOOP

ENDLOOP
```

- 1 At LOOP cycle1 STEP, values for %s1 and %p1 are taken from the first row in DEFINE LOOP cycle1 ("A" and "r1a1" respectively).
- 2 The method then runs through all three rows in DEFINE LOOP cycle2 using the values "A" and "r1a1" for %s1 and %p1. This runs the combinations A-A, A-B and A-C.
- When LOOP cycle2 is completed, the next step of LOOP cycle1 is executed, taking "B" and "r1a2" for %s1 and %p1. LOOP cycle2 now runs again, generating the combinations B-A, B-B and B-C.
- 4 In the same way, the last step of LOOP cycle1 generates the combinations C-A, C-B and C-C.

This example is only a 3×3 matrix, but the economy of nested loop constructions is readily apparent if you consider for example a 10×10 matrix with 100 combinations.

E.3.4 Communicating with the user – DEFINE ALERT and DEFINE MESSAGE

The two commands ALERT and MESSAGE, with their corresponding DEFINE ALERT and DEFINE MESSAGE blocks, are used to inform the user of the progress of a method. ALERT activates a dialog window which allows the user to abort or continue the method. MESSAGE simply displays a text window. The command BEEP sounds a beep to call the operator's attention, and can often be appropriate in connection with ALERT or MESSAGE.

The instrument door is unlocked whenever an ALERT window is displayed, giving the user access to the autosampler compartment for e.g. inserting samples or changing racks. The door is re-locked when the user acknowledges the window and continues with the method.

For both DEFINE ALERT and DEFINE MESSAGE, text messages are written in lines of up to 40 characters. The commands LTEXT, CTEXT and RTEXT place text messages either left-justified, centered or right-justified respectively on the line. The text may include variable names, which are declared in one or more PARAM commands and which are given values when the ALERT or MESSAGE is called from the MAIN block, in exactly the same way as parameters are passed to **APROG** (see Section E.3.2). Additional functions specific to the two types of information block are:

- DEFINE ALERT block should have a GO command, which generates a dialog box button for continuing the method. The STOP command generates a similar button for aborting the method. Each command requires a parameter which is the text to be shown in the button.
- DEFINE MESSAGE may include a CLOCK command, which displays a countdown timer in the upper right-hand corner of the MESSAGE window. The clock is for information only, and does not affect method operation in any way. There is a LIFETIME command which may be used during method development to find out how long a process takes to complete, to give a suitable starting value for CLOCK.

An ALERT window remains displayed until the user presses the GO or STOP button. A MESSAGE window remains displayed until one of the following conditions is met:

- another MESSAGE window or an ALERT window is displayed
- the window is removed by issuing the command MESSAGE with no parameters
- the method ends.

The following example illustrates the use of **ALERT** in a method where an unstable sample is to be thawed immediately before use:

```
DEFINE ALERT insert sample
      TITLE Unstable sample
      BEEP
      LTEXT
      LTEXT Continuation of this method requires
      LTEXT sample in position r2a1. Make sure that
      LTEXT the sample is completely thawed before
      LTEXT placing it in the autosampler rack.
      LTEXT
      LTEXT Close the door and click on Continue
      LTEXT when you are ready.
      GO Continue
      STOP Cancel
END
MAIN
      RACK 1 thermo A
      RACK 2 thermo B
```

ALERT insert_sample APROG cycle1

END

E.3.5 Additional data curves – CURVE command

A new cycle is automatically created for every APROG in a method. With the CURVE command, you can record status information as graphs in parallel with the sensorgram. Place this command at the beginning of the APROG: it may only be preceded by PARAM, MODE, CAPTION, SCALE or KEYWORD.

The status items that can be recorded are buffer flow and remaining volume in the continuous flow pump and temperature in the detection unit (see Appendix F). Use buffer flow and temperature to check for stability throughout a method. Monitor buffer volume during method development to check when the pumps are refilled, to ensure that refilling does not occur at a critical point in the sensorgram.

The command **CURVE** creates a status curve related either to the left (RU) axis as default or to an optional axis on the right of the sensorgram. The following example plots temperature and buffer flow as overlays on the sensorgram, with the temperature axis on the right:

```
DEFINE APROG monitor

CURVE TEMP -o ! use right-hand axis

CURVE bufflow ! use default axis

FLOW 20

...

END
```

You can set report points on status curves using the **-c** option for the **RPOINT** command.

E.3.6 Closing down – APPEND command

The END command at the end of every APROG includes automatic functions for washing the IFC and flow cells with buffer. You can append the *Standby* tool to a method if the instrument is not going to be used for up to 4 days after completion of the method. This will flush the IFC and maintain a low buffer flow for up to 4 days (see Section 7.2). For example:

DEFINE APROG analyze

END

DEFINE APROG regenerate

END

MAIN

DETECTION 1 APROG analyze APROG regenerate APPEND standby

END

Note: For compatibility with earlier versions of MDL, the command APPEND continue is equivalent to APPEND standby.

E.4 Method techniques

This section considers some features of method programming from the viewpoint of application requirements.

E.4.1 Detection mode and flow path

Detection mode

Biacore 3000 operates in single or multichannel detection mode, with data collection from one, two or four flow cells.

You set the detection mode and the initial flow path with a **DETECTION** command in the **MAIN** block of the method. You can change the detection mode between **APROGs** in the **MAIN** block.

MAIN	
DETECTION 1	! single channel mode
APROG single	
DETECTION 1,2,3,4	! multichannel mode
APROG multi	
END	

If there is no **DETECTION** command before the first **APROG** in the **MAIN** block, the software will prompt for detection mode when the method is run:

The selection in this dialog box corresponds directly to the **DETECTION** command in the **MAIN** block. The sensorgram will not start until you click on **OK** in this dialog box. Methods written without a **DETECTION** command are flexible in that you can use the same method for analysis in different flow cells.

The **DETECTION** command may only be used in the MAIN block.

Flow path

The flow path set by the **DETECTION** command remains open until one of the following occurs:

- a new DETECTION command is issued in the MAIN block
- a FLOWPATH command is issued in an APROG (see below)
- an INJECT command is issued in an APROG with a flow cell requirement different from the current flow path.

You can use the **FLOWPATH** command in an **APROG** to change the flow path during the cycle. You may for instance wish to bind analyte to the ligand in all four flow cells and then test the binding of four different secondary ligands, one in each flow cell (this is a typical epitope mapping application, shown in more detail in Appendix B.

```
DEFINE APROG epitope
     PARAM %pos1 %pos2 %pos3 %pos5 %pos5
     FLOW 5
     FLOWPATH 1,2,3,4
     INJECT %pos1 5
                        ! first Mab
     INJECT r1c1 5
                        ! antigen
     FLOWPATH 1
     INJECT %pos2 5
                         ! second Mab 1
     FLOWPATH 2
     INJECT %pos3 5
                        ! second Mab 2
     FLOWPATH 3
                        ! second Mab 3
     INJECT %pos4 5
     FLOWPATH 4
                        ! second Mab 4
     INJECT %pos5 5
     FLOWPATH 1.2.3.4
     INJECT r1d3 15
                         ! regenerate
END
MAIN
     DETECTION 1,2,3,4
     APROG epitope
     ...
END
```
The FLOWPATH command may only be used in an APROG block.

IMPORTANT! The DETECTION command sets both the detection mode and the initial flow path. However, the **FLOWPATH** command does not affect the detection mode. Take care not to set the flow path to include cells where data is not being collected, e.g.

```
      MAIN
      DETECTION 4
      ! single channel detection in Fc 4

      APROG missing_data
      ! single channel detection in Fc 4

      END
      DEFINE APROG missing_data
      ! sample flow through Fc 1-2-3

      FLOW 20
      FLOWPATH 1,2,3
      ! sample flow through Fc 1-2-3

      FLOW
      ...
      ...

      END
      ...
```

The same mistake can easily be made with a variable contact time injection, which sets the flow path implicitly (see Section E.4.3).

The design of the **Detection** and **Inject** dialog boxes prevents this mistake under manual control, but there is no equivalent safeguard in methods. To avoid missing data in method runs:

- Use FLOWPATH with care. Few applications require changes in flow path during an APROG. It is often preferable to use separate APROGs, setting the flow path for each one with a DETECTION command in MAIN.
- Set DETECTION 1,2,3,4 at the beginning of the MAIN block if you are unsure of the requirements of your APROGs. This will set multi-channel detection mode, and no data will be lost.

On-line reference subtraction

To use on-line reference subtraction, use one of the following parameters with the **DETECTION** command:

Parameter	Detection mode	Flow path	Reference subtraction
2-1	1,2	1,2	2-1
4-3	3,4	3,4	4-3
2-1,4-3	1,2,3,4	1,2,3,4	2-1, 4-3
2-1,3-1,4-1	1,2,3,4	1,2,3,4	2-1,3-1,4-1

An example is given below

```
MAIN
DETECTION 2-1,4-3 ! single channel mode
APROG subtract_reference
END
```

E.4.2 Sample injection types

Biacore 3000 offers a range of sample injection types for different application purposes. These are available from the manual control interface (see Section 4.4.6), and all except manual injection can be programmed in methods.

To make sure that an injection will not be disturbed by a pump refill operation, issue a FLOW command with the -f option just before the INJECT command, e.g.

DEFINE APROG smooth_inject FLOW 35 10:00 WASH n FLOW 35 -f ! refill pump KINJECT r1a1 140 240 END

Any INJECT command issued when the flow rate is zero causes a run-time error. This situation is not detected by method pre-run.

Command	Comments	Injected volume	Sample consumption	Max flow rate
INJECT	General purpose inject.	5-325 µl	Injected vol +30 µl	100 µl/min
KINJECT	Low dispersion inject for kinetics and for samples sensitive to dilution with running buffer. Controlled dissociation time after sample injection.	10-250 µl	Injected vol +40 µl	100 µl/min
QUICKINJECT	Low sample consumption. Less preparation time than INJECT but more sample dispersion.	5-325 µl	Injected vol +10 μl	100 µl/min
COINJECT	Injection of second sample immediately following the first (e.g. for dissociation in the presence of ligand). Variable contact times for first sample only.	Sample 1: 10-100 µl Sample 2: 15-250 µl	Sample 1: injected vol +40 µl Sample 2: injected vol +40 µl	100 µl/min

BIGINJECT	Large volume inject. Direct inject up to 325 µl, sample loop between 326 and 425 µl, direct between 426 and 750 µl.	326-750 μl	Injected vol +52 µl	50 µl/min*
MS_INJECT	For analyte recovery from the IFC. Low sample consumption and reduced analyte dissociation**.	2-225 µl	Injected vol +3 µl	100 µl/min
MSP_INJECT	For analyte recovery from the Surface Prep unit (SP_2 configuration). Low sample consumption and reduced analyte dissociation**.	2-225 µl	Injected vol +3 µl	100 µl/min

 * BIGINJECT cannot be performed at higher flow rates because the autosampler tubing must be refilled during injection from the sample loop for samples larger than 425 $\mu l.$

** There is no flow in the flow cells at the end of MS_INJECT and MSP_INJECT. It may be necessary to reset FLOWPATH and FLOW following these injections.

E.4.3 Variable contact time injections

The sample volume parameter for **INJECT** commands can be either a single volume or a list of 2, 3 or 4 volumes separated by commas.

Single volume	In single channel mode, this is the sample volume injected through the currently selected flow cell. In multichannel mode, this volume will be injected over all flow cells in the currently selected flow path.
Volume list	A list of volumes specifies variable contact times in

/olume list A list of volumes specifies variable contact times in multichannel mode. The first, second, third and fourth volumes apply to flow cells 1, 2, 3 and 4 respectively.

Each volume in the volume list must be less than or the same as the preceding volume. Thus INJECT 35,25,20,10 and INJECT 35,25,25,10 are valid, but INJECT 35,20,25,10 is not.

An INJECT command with a volume list sets the flow path as required for the duration of the injection. When the injection is complete, the flow path is restored to the previous setting:

MAIN END	l DETECTION 1,2,3,4 APROG immob	! All four flow cells in flow path
DEFI	NE APROG immob FLOW 5	
FND	 INJECT r1a1 35,25 	! Flow cells 1 and 2 for INJECT ! Back to all four flow cells

Remember to use **DETECTION 1,2,3,4** in the MAIN block to set multi-channel detection if you use variable contact times in **INJECT** commands. If you set single channel detection mode, you will inject sample over multiple flow cells with variable contact times, but you will record the sensorgram from one cell only (see note above).

Note: An INJECT command with a single volume parameter does not affect the flow path.

E.4.4 Analyte recovery

Biacore 3000 supports recovery of analyte bound to the surface, from either the IFC or the Surface Prep unit. Recovery from the IFC will normally use a sequence of MS_INJECT, MS_WASH and MS_RECOVER commands, while Surface Prep unit recovery experiments use MSP_PRIME, MSP_INJECT and MSP_RECOVER. The MICROTRANSFER command can also be used to add between 1-10 μ I of reagent (MALDI matrix or enzyme solution for example) to the recovered analyte. If recovered analyte is deposited directly on to a MALDI target, TARGETWASH may be used to remove salt and other residues. See Appendix F for more details about these commands.

E.4.5 The EXTRACLEAN command

Automatic routines wash the liquid handling system after each INJECT command and after each APROG. If more thorough cleaning is required, use the EXTRACLEAN command (corresponding to *Extra Cleanup* in the *Inject* dialog box in the manual control interface). See Appendix B for recommendations concerning when to use the extra cleanup routines.

The EXTRACLEAN command must be placed directly after the INJECT command to which it applies. You can however enter a comment between the INJECT and the EXTRACLEAN command.

E.4.6 User tools in methods

The working tools *Flush, Normalize, Prime* and *Rinse* and the service tool *Unclogging* can be used between cycles in a method. Enter the corresponding command in the MAIN block (see Appendix F for command details).

The user tool **Standby** may be added at the end of a method using the **APPEND** command in the **MAIN** block. This puts the instrument in standby mode when the method is completed.

E.5 Common errors and error handling

This section describes some of the most common mistakes you will make when writing methods, and how the Control Software handles incorrect methods.

E.5.1 General error handling

All methods are tested in the Control Software prerun facility before they are run. You may choose to do this explicitly at any stage: alternatively, you may try to run the method directly, in which case prerun is done automatically before the method is actually activated.

The prerun facility checks the syntax and consistency of your method. If there are any errors, error messages are written in the appropriate places in the actual method file. An error message is identified by the two characters ">>" at the beginning of the line. A message above the error identifies the nature of the error, and a line below the error has a caret (^) pointing to the incorrect word:

```
...
>> Invalid vial position
 * INJECT r4a1 20
>> ^
! r4 is not a valid rack number
...
```

If you correct errors in a method but leave the error messages in place, all lines beginning with ">>" are stripped out of the method file at the next pre-run. You do not need to remove the error message lines manually. You can also use *Edit:Adjust Method* to remove error messages from the method.

E.5.2 Syntax errors

Among the most common errors are syntax errors, breaking the rules of MDL. For instance, forgetting the END at the end of a DEFINE APROG is a syntax error.

You may make syntax errors through incorrect usage (for instance, trying to put a RACK command in a DEFINE APROG block) or through typing mistakes (for instance, writing APORG instead of APROG). Normally, the Control Software cannot distinguish between these situations – both give an "Unrecognized command":

```
DEFINE APROGtest

FLOW 20

>> Unrecognized command

RACK 1 Thermo_a

>> ^

! RACK cannot be used in APROG

MAIN

>> Unrecognized command

APORG test

>> ^

! APORG should be APROG
```

Note that some errors may arise as a direct consequence of previous mistakes, even though the syntax in itself is correct. In the example below, the END command is missing from the DEFINE APROG, with the result that the syntax checker has difficulty interpreting the (correctly written) MAIN block:

```
DEFINE APROG test

FLOW 20

INJECT r1a1 10

! END missing

>> Expecting keyword END

MAIN

>>^

DETECTION 2

>> Characters outside DEFINE-END or MAIN-END blocks

APROG test

>> ^

END
```

To make interpretation of consequential errors easier when you have several error messages in one method, correct the errors one at a time starting at the beginning of the method, and repeat *Prerun* after each correction.

E.5.3 Incorrect variable names

Misspelling a variable name causes an error in two contexts:

- Within a DEFINE block (defining ALERT, APROG or MESSAGE), the variable names declared in the PARAM command must be the same as those used in commands within the block.
- The variable names declared in the LPARAM command in a DEFINE LOOP must be the same as those used in commands within the LOOP construction.

Mistakes in these situations generate the following error messages:

DEFINE APROG test PARAM %flow %pos %vol >> Expecting an integer value, min=0 max=100 FLOW %folw ^ >> ! variable name should be %flow INJECT %pos %vol END DEFINE LOOP cycle LPARAM %flow %pos %vol 5 r1a1 10 10 r1a1 10 END MAIN DETECTION LOOP cycle STEP >> Expecting an integer value, min=5 max=325 APROG test %flow %pos %volume ^ >> ! variable name should be %vol

ENDLOOP

END

E.5.4 Incorrect parameter values

Many parameters have a restricted range of values. You cannot for instance select flow cell number 5 (there are only 4 flow cells) or move the autosampler needle to position r4a1 (the position does not exist). Permitted ranges are given in the detailed descriptions for each command (Appendix F). The Control Software warns you for incorrect parameter values:

```
...
>> Invalid vial position
 * INJECT r4a1 20
>> ^
```

! r4 is not a valid rack number

"Invalid vial position" is a special case, in that the different positions are valid for different racks. If the method does not contain a **RACK** command, the syntax will be checked in the context of the current rack setting.

E.5.5 Incorrect parameter ordering

Parameters (values or variable names) must be given in the right order when you call an APROG, ALERT or MESSAGE from the MAIN block. The order must be that given in the PARAM declaration.

If you make a mistake in the ordering, the chances are that you will generate a syntax error. The following incorrect method for instance tries to use the value 10 for autosampler position and r1a1 for volume:

```
DEFINE APROG test

PARAM %vol %pos

FLOW 20

INJECT %pos %vol

END

MAIN

DETECTION 1

>> Expecting a value, min=5 max=325

APROG test r1a1 10

>> ^

! APROG test is defined with volume before position
```

END

In some cases, incorrect parameter ordering might go undetected by the Control Software. The following method is syntactically valid:

```
DEFINE APROG test
     PARAM %flow %pos %vol
     FLOW %flow
     INJECT %pos %vol
END
DEFINE LOOP cycle
     LPARAM %vol %pos %flow
             10
                 r1a1 5
             20
                r1a1 10
END
MAIN
     DETECTION 1
     I OOP
        APROG test %vol %pos %flow
     ENDLOOP
END
```

The parameter order is reversed between the APROG call and the PARAM declaration, but the method passes perfectly valid parameter values to the APROG, with the result that 5 μ l is injected at 10 μ l/min instead of 10 μ l at 5 μ l/min. Errors of this kind can be detected by inspection of the event log for the run.

E.5.6 Incorrect number of variables

You must declare all variables used in a program. An error results otherwise:

```
DEFINE APROG test

PARAM %pos %vol

>> Expecting an integer value, min=0 max=100

FLOW %flow

>> ^

! variable %flow not declared

INJECT %pos %vol

END
```

You may declare more variables than you use – for instance, during development work you may "comment out" commands which use variables, but you do not need to remove the variable names from the declaration

DEFINE APROG test

- PARAM %sample %mix %vol
- FLOW 20
- ! TRANSFER %sample %mix %vol
- MIX %mix 100 INJECT %mix 10
- INJECT
- END

! parameters %sample and %volume not used

In the same way, parameter values must be supplied for all variables used in a program. If you do not supply enough values, an error results:

```
DEFINE APROG test

PARAM %flow %pos %vol

FLOW %flow

INJECT %pos %vol

END

MAIN

DETECTION 1

>> Missing parameter

APROG test 25 r1a1

>> ^

! APROG test requires 3 parameters.
! No value given for %vol
```

END

E.5.7 Prerun error messages

This section lists the error messages that can be inserted into the method file when prerun encounters a syntax error.

... commands must precede all other instrument command types

Variable declarations (PARAM in APROG, LPARAM in LOOP) must be the first commands in the block. KEYWORD, MODE, CURVE and FLOW must precede other commands in APROG.

... has already been used

You have used more than one **EXTRACLEAN** command after an injection command.

... must be the first command in ...

RACK must be the first command in MAIN, with the exception of ALERT which can precede RACK.

... not allowed after APPEND

No commands may be written after APPEND in the MAIN block.

Buffer overflow

This error can arise if a line in the method definition exceeds 255 characters.

Characters outside DEFINE-END or MAIN-END blocks

All characters in a method file must be within method definition blocks. A common source of this error is omission of **DEFINE** at the beginning of a block. Consequential error messages can easily arise as a result.

Conflicting LPARAM ...

Nested loops use parameter names in common. The error message points to the inner LOOP command.

ENDLOOP without matching LOOP

The LOOP command must be balanced with an ENDLOOP after the commands to be repeated by the loop. Omitting the LOOP gives this error message.

Expecting...

Depending on the context of the error, the syntax checker may be able to suggest an expected keyword, value or character.

Expecting a real number, min=... max=...

The command requires a real number (i.e. integer or decimal value) as a parameter. This message can arise if a variable name is incorrect, so that the parameter value supplied to the command is not a real number in the correct range.

Expecting a time value, min=... max=...

A time parameter has been given a value which is outside the range permitted in the context (for example a time which is longer than 3600 s).

Expecting an integer value, min=... max=...

The command requires an integer value as a parameter. This message can arise if a variable name is incorrect, so that the parameter value supplied to the command is not an integer in the correct range.

Fractional time is not allowed

This message appears when a decimal time is specified where only integer time specifications are allowed (e.g. WAIT).

Incompatible parameters

You have used a variable in different contexts which are not compatible with each other. This message also appears if you use the same variable for the volume with **BIGINJECT** and another injection command.

Invalid block name

You have used a name which is not valid as the name of a method definition block. Names may contain letters, digits and the special characters & _ and %, but may not begin with a digit or underscore character.

Invalid rack type

The parameter you have provided for the RACK command is not a valid rack type. Valid types are THERMO_A, THERMO_B, THERMO_C and MICRO for rack positions 1 and 2 and REAG_A for rack position R.

Invalid time

You have used an invalid time specification. Give times in seconds (ssss), minutes and seconds (mmm:ss) or hours, minutes and seconds (hh:mm:ss). The specification 1:70 (1 minute and 70 seconds) is invalid.

Invalid variable name

You have used a name which is not valid as the name of a variable. Names may contain letters, digits and the special characters & _ and %, but may not begin with a digit or underscore character.

Invalid vial position

You have specified a rack position that is not valid for the current rack type. Positions are "valid" in the context of the current rack definition. Check the position specification and the rack type currently defined in **Command:Define Rack Base**.

Method ... not found

You have used APPEND with an incorrect method name. Only the internal method STANDBY may be called with APPEND.

Missing "

Quotation marks around text (e.g. in LTEXT, CTEXT, RTEXT, CAPTION commands) must be matched.

Missing parameter

You have called a block with fewer parameters than are declared in the corresponding block definition.

Missing reference time

You have specified a negative time for an **RPOINT** command in **APROG** with no preceding *-marked command to set the reference time.

Name duplicated

You have used the same name twice in the same context. Two blocks of the same type may not have the same name, and variables declared with **PARAM** must be unique within one block. Use the *Edit:Find* command in the method editor to find different occurrences of the same name.

Only one decimal allowed

This message appears when more than one decimal is specified for a number that only supports one decimal.

Only one MAIN allowed

A method may not contain more than one MAIN block definition.

Option without value

You have used a command option without specifying a value where one is required, for example **CURVE** temp -p.

String too long

You have used a string in for example a TITLE, CTEXT, LTEXT or RTEXT command that is longer than the maximum permitted length.

Syntax error

There is an error in the method definition that the syntax checker cannot identify.

This command cannot be used as a reference point

You can only set a reference point for timed events in an APROG, i.e. for the commands BIGINJECT, COINJECT, DILUTE, INJECT, KINJECT, QUICKINJECT, MIX and TRANSFER.

This command must follow immediately after ...

You have used a command in the wrong command order. The command in question must follow directly after an inject command. This error may occur with **EXTRACLEAN** command.

Time may not exceed ... s

The maximum time allowed for 1 cycle is 1.5×10^6 s (about 17 days). You have probably made a mistake in a time specification.

Time not supported by command

You can only set time specifications in an APROG for the commands FLOW, BIGINJECT, COINJECT, INJECT, KINJECT, QUICKINJECT, RPOINT, MIX, TRANSFER and WASH.

Note: The first FLOW command in an APROG cannot be timed.

Timing order out of sequence

Timed events in an APROG must be written in chronological sequence.

Too many parameters

A command has been written with more parameters than the syntax defines, or a method block has been called with more parameters than are declared in the corresponding **DEFINE** block.

Too many variables

The number of variables declared with **PARAM** commands in one **APROG** may not exceed 20.

Undefined name

You have called a method block using a name that is not defined. Check that the block is properly defined and that the name is correctly spelt.

Unrecognized command

You have used a command in a method definition block where it is not allowed, or you have spelt a command keyword incorrectly.

Unrecognized option

You have specified an option which is not valid for the command.

Variable not allowed

You have used a variable in a context where it is not allowed. The first parameter supplied to the command **KEYWORD** may not be a variable.

Appendix F Method language reference

This chapter is a complete reference to the method editor commands.

- Keywords are written in upper-case.
- Parameter identifiers are written in lower-case italics.
- Optional components are enclosed in square brackets ([...]).
- An ellipsis (...) is used to indicate that a list of components may be extended indefinitely.
- Options are used only for special purposes, such as maintenance and test methods. All commands have default option settings which are suitable for normal applications.
- "Default values" are values that will be used for parameters and options if no other value is specified. The default values apply even if the option is omitted from the command.

F.1 Command summary

The tables below list the commands which can be used in each method block together with a brief indication of the command purpose. The remainder of this chapter describes the commands in detail, listed in alphabetical order.

DEFINE ALERT block

BEEP	Sounds a beep to alert the operator
CTEXT	Writes text centered horizontally in box
GO	Displays a button for "continue" function
LTEXT	Writes text left-aligned in box
PARAM	Declares variables used in ALERT
RTEXT	Writes text right-aligned in box
STOP	Displays a button for "abort" function
TITLE	Sets the title bar text for the ALERT box

DEFINE APROG block

BIGINJECT	Large volume injection 326 – 750 µl to IFC
BYPASSWASH	Washes IFC channels but not flow cells
CAPTION	Sets caption for sensorgram or curve
COINJECT	Dual injection to IFC
CURVE	Plots values for a status item
DILUTE	Dilutes one sample with another
DIPNEEDLE	Predips needle in vial
EXTRACLEAN	Extra wash procedure after injection
FLOW	Sets flow rate
FLOWPATH	Defines flow path
INJECT	Injects sample to IFC
KEYWORD	Defines column in report point table
KINJECT	Low dispersion injection
MICRORECOVER1	Recovers surface-bound material in small volume
MICROTRANSFER	Transfers small volumes of reagents between autosampler positions
MIX	Mixes sample
MODE	Sets data collection parameters
MS_INJECT	Injects sample to IFC for recovery
MS_RECOVER	Recovery of bound analyte from IFC in 2µl final volume
MS_WASH	Washes IFC channels (except flow cells) prior to recovery
MSP_INJECT2	Injects sample to Surface Prep unit for analyte recovery
MSP_PRIME	Washes Surface Prep unit (injection port and flow cell) prior to analyte recovery
MSP_RECOVER2	Recovery of bound analyte from Surface Prep unit in 2 μ l final volume
PARAM	Declares variables used in APROG
QUICKINJECT	Quick injection to IFC

RPOINT	Sets report point
SCALE	Sets default scale for sensorgram and status curves
TARGETWASH	Removes residues from defined MALDI target wells
TRANSFER	Transfers sample between autosampler vials
WAIT	Waits a specified time
WASH	Washes IFC channels and/or autosampler needle

- ¹ MICRORECOVER is an older method command that is retained for reasons of back-compatibilty. MS_RECOVER and MSP_RECOVER are now recommended for use in analyte recovery methods.
- ² If these commands are written in the DEFINE APROG block, an event log will be generated, but note that an irrelevant sensorgram will be started (there is no SPR detection in the Surface Prep unit).

DEFINE LOOP block

LPARAM	Declares variables used in DEFINE LOOP
TIMES	Sets the repeat count for sets of variables

DEFINE MESSAGE block

BEEP	Sounds a beep to alert the operator
CLOCK	Displays count-down timer
CTEXT	Writes text centered horizontally in box
LIFETIME	Shows time for which message has been displayed
LTEXT	Writes text left-aligned in box
PARAM	Declares variables used in MESSAGE
RTEXT	Writes text right-aligned in box
TITLE	Sets the title bar text for the MESSAGE box

Appendix F Method language reference F.1 Command summary

MAIN block

ALERT	Displays an ALERT box
APPEND	Runs a termination routine after the method
APROG	Runs an analysis program (APROG)
BEEP	Sounds a beep to alert the operator
DETECTION	Selects detection mode and initial flow path
DILUTE	Dilutes one sample with another
ENDLOOP	Ends a loop definition
FLOW	Sets flow rate
FLUSH	Runs the working tool Flush
LOOP	Repeats one or more commands
MESSAGE	Displays a MESSAGE box
МІХ	Mixes sample
MSP_INJECT*	Injects sample to Surface Prep unit for analyte recovery
MSP_PRIME	Washes Surface Prep unit (injection port and flow cell) prior to analyte recovery
MSP_RECOVER*	Recovery of bound analyte from Surface Prep unit in 2µl final volume
NORMALIZE	Runs the working tool Normalize
PRIME	Runs the working tool Prime
RACK	Sets the rack base type
RINSE	Runs the working tool Rinse
TEMP	Sets the detection temperature
TRANSFER	Transfers sample between autosampler vials
UNCLOG	Runs the working tool Unclogging
WAIT	Waits a specified time
WASH	Washes liquid handling system components

 \star If these commands are used in the MAIN block, no event log will be generated.

ALERT name [parameter...]

Displays an ALERT box.

Usage: MAIN block.

Parameters

name Name of the ALERT box as specified in DEFINE ALERT.

parameter Parameter supplied to the ALERT box.

Parameters supplied to the ALERT must correspond sequentially to the variables declared in the PARAM command in DEFINE ALERT.

Within a LOOP construction, parameters may be supplied as either constant values or variable names. Variable names must be the same as those declared in the corresponding DEFINE LOOP. Outside a LOOP, parameters must be supplied as constant values.

Example

DEFINE ALERT check_solution PARAM %pos LTEXT Place test solution in position %pos GO OK END MAIN ALERT check_solution r1a1 END

APPEND standby

Runs the working tool *Standby* after the method.

Usage: MAIN block.

Parameters

standby Name of the tool to run after the method. At present, only the **Standby** tool is accepted.

The APPEND command must be the last command in the MAIN block.

Note: The working tool **Continue** provided in previous versions of GE Healthcare control software has been renamed to **Standby**. For backward compatibility, the name **Continue** may still be used with the **APPEND** command. Appendix F Method language reference APROG name [parameter ...]

Example

MAIN DETECTION 1 APROG immob APROG analyze ... APROG regenerate APPEND standby

END

APROG name [parameter ...]

Runs an analysis program (APROG).

Usage: MAIN block.

Parameters

name Name of the program as specified in DEFINE APROG

parameter Parameter supplied to the APROG.

Parameters supplied to the APROG must correspond sequentially to the variables declared in the PARAM command in DEFINE APROG.

Within a LOOP construction, parameters may be supplied as either constant values or variable names. Variable names must be the same as those declared in the corresponding DEFINE LOOP. Outside a LOOP, parameters must be supplied as constant values.

Example

DEFINE APROG injection PARAM %position %volume FLOW 20 INJECT %position %volume END

MAIN

DETECTION 1 APROG injection r1a1 20 APROG injection r2a5 35

END

[*] BIGINJECT position volume

Large volume injections (326 - 750 µl).

Usage: DEFINE APROG block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position	Rack position of sample.
volume	Volume to be injected, or a list of up to four volumes separated by commas for variable contact time injections (see Section E.4.3). Range 326-750 µl.

BIGINJECT first loads the IFC sample loop with 100 μ l sample. The first 325 μ l of the injection are injected directly, followed by up to 100 μ l from the loop, then followed by direct injection to complete the volume if necessary. Slight disturbances in the sensorgram may be apparent as the injection switches between direct and loop injection modes.

The maximum flow rate during **BIGINJECT** is 50 μ l/min. This limitation is necessary so that the autosampler has time to re-fill the tubing for the second direct injection during the loop injection.

Sample consumption is injected volume + 52 μ l.

Example

```
DEFINE APROG large_vol
FLOW 50
*0:30 BIGINJECT r1a1 500
4:00 RPOINT response !rpoint 4 min after injection start
END
```

Appendix F Method language reference BEEP

BEEP

Sounds a beep from the computer to alert the operator.

Usage: DEFINE ALERT, DEFINE MESSAGE and MAIN blocks.

Example

```
MAIN
APROG immob
BEEP
APROG analyze
END
DEFINE MESSAGE box
BEEP
BEEP
LTEXT Don't miss this message!
END
```

[*][time] BYPASSWASH pos1 pos2 pos3

Washes IFC channels but not the flow cells with up to three user-defined solutions in preparation for **MICRORECOVER**.

Usage: DEFINE APROG.

Parameters

Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
Rack position for first washing solution.Volume consumption 20 µl.
Rack position for second washing solution.Volume consumption 20 µl.
Rack position for third washing solution.Volume consumption 40 µl.

Example

DEFINE APROG recover FLOW 10 * QUICKINJECT r1a1 10 EXTRACLEAN BYPASSWASH r2f5 r2f6 r2f7 MICRORECOVER r2a1 r2b1 r2f3 r2f4 30

END

CAPTION Text

Sets the caption of the current graph.

Usage: DEFINE APROG block.

Parameters

Text to be used as caption. text

Example

DEFINE APROG temp_check **CAPTION Temperature check** CURVE temp FLOW 10 INJECT r1a1 10

END

CLOCK time [option]

Displays a count-down timer.

Usage: DEFINE MESSAGE block.

Parameters

Starting time for timer. Format HH:MM:SS, MMM:SS or SSS. time

Options

Display time in minutes only. -m

Example

DEFINE MESSAGE countdown RTEXT minutes remaining CLOCK 5:00 -m END

[*][time] COINJECT position1 volume1 postion2 volume2

Low dispersion inject with two direct following injections, e.g. for competing ligand during dissociation phase.

Usage: **DEFINE APROG** block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position1	Rack position for sample 1.
volume1	Volume of sample 1, or a list of up to four volumes separated by commas for variable contact time injections (see Section E.4.3). Range 10-100 $\mu l.$
position2	Rack position for sample 2.
volume2	Volume of sample 2, range 15-250 µl

Sample 1 is injected from the IFC sample loop. Sample 2 is injected in direct inject mode. Variable contact times can only be specified for sample 1.

Sample consumption is injected volume + 40 μ l for both sample 1 and sample 2.

Example

DEFINE APROG double_inject FLOW 50 *0:30 COINJECT r1a1 50 r1a2 150 0:50 RPOINT resp1 !rpoint 1st inject 3:50 RPOINT resp2 !rpoint 2nd inject END

CTEXT [text]

Writes centered text in an ALERT or MESSAGE box.

Usage: DEFINE ALERT and DEFINE MESSAGE blocks.

Parameters

text Text containing up to 40 characters. A blank line is inserted in the **MESSAGE** box if text is omitted.

Example

DEFINE MESSAGE demo TITLE DEMONSTRATION BOX LTEXT This text is left-adjusted **CTEXT** This text is centered RTEXT This text is right-adjusted END

CURVE item [option ...]

Plots the value of a status item in the sensorgram window.

Usage: DEFINE APROG block.

Parameters item

Name of t	the status item to plot:
temp	detection unit temperature
bufflow	buffer flow rate (continuous flow pump)
buffvol	volume of buffer remaining in the continuous flow pump

Options

- Optional plot. Relate values to the right-hand axis. -0
- Pen color identified by n: -pn
 - 0 black 1 blue

3 cyan

6 yellow

4 red

- 8 gray 9 light blue
- 2 green
- 10 light green
- 11 light cyan
- 12 light red
- 5 magenta
- 13 light magenta
- 14 light yellow 15 bright white
- 7 white
- -dn Reading rate interval. Values for n in seconds. Range 0.2-65 s. Default values are 30 for temp and 1 for bufflow and buffvol.

Example

DEFINE APROG temp_check CURVE temp -o FLOW 10 INJECT r1a1 10 END

Appendix F Method language reference DEFINE ALERT

DEFINE ALERT

Defines a dialog box prompting with "continue" and "abort" buttons.

Usage: Block definition.

Syntax

```
DEFINE ALERT name
[PARAM variable ...]
other commands
END
```

The GO and STOP commands respectively are used in the DEFINE ALERT block to specify text on the "continue" and "abort" buttons in the ALERT box.

If the block contains neither STOP nor GO commands, the box will include a "continue" button with the text **Continue** and an "abort" button with the text **Abort**. If the block contains either STOP or GO but not both, the box will include one button as appropriate but not the other. Note that a **DEFINE ALERT** block which contains only a STOP command will display a dialog box where the only option is to abort the method.

The instrument door is unlocked and the method is paused while the alert box is displayed. Clicking on the "continue" button resumes method operation. Clicking on the "abort" button stops the method immediately.

DEFINE APROG

Defines a series of operations as an analysis program.

Usage: Block definition.

Syntax

DEFINE APROG name FLOW flowrate other commands END

Each APROG must contain a FLOW command. The FLOW command must be the first operational command in the APROG. Commands that affect settings (such as CAPTION, MODE, CURVE) are placed before the FLOW command.

DEFINE LOOP

Sets up a table of values for repetitive analyses.

Usage: Block definition.

Syntax

DEFINE LOOP na	me	
LPARA	M variable	
(TIMES	count]	
	value	
END		

See Section E.3.3 for details of loop definition.

DEFINE MESSAGE

Defines a message box.

Usage: Block definition.

Syntax

DEFINE MESSAGE name [PARAM variable ...] other commands END

A message box displays information for the operator. The message remains displayed until a new MESSAGE command is issued, an ALERT box is displayed or the method ends.

Displaying a message box does not interrupt the method or unlock the instrument door (compare **DEFINE ALERT**).

A message box cannot be closed interactively during method operation. If you want to define a message to be acknowledged by the operator, use a **DEFINE ALERT** block and include a **GO** command in the block.

DETECTION fc

Sets detection mode and initial flow path.

Usage: MAIN block.

Parameters

fc Mode settings. See table below for values.

The **DETECTION** command sets detection mode, flow path and reference subtraction according to the following table:

fc value	Detection	Flow path	Reference subtraction
1	1	1	not applicable
2	2	2	not applicable
3	3	3	not applicable
4	4	4	not applicable
1,2	1,2	1,2	none
2-1	1,2	1,2	2-1
3,4	3,4	3,4	none
4-3	3,4	3,4	4-3
1,2,3,4	1,2,3,4	1,2,3,4	none
2-1,4-3	1,2,3,4	1,2,3,4	2-1, 4-3
2-1,3-1,4-1	1,2,3,4	1,2,3,4	2-1,3-1,4-1

Other combinations of flow cell numbers in the *fc* parameter are invalid.

The flow path (but not the detection mode or reference subtraction) can subsequently be changed with the FLOWPATH command in an APROG. The INJECT command will also temporarily set the flow path if required. See Section E.4.1 for more details.

DETECTION replaces the **FLOWCELL** command used in earlier versions of the software. **FLOWCELL** is still accepted for compatibility with methods written in earlier versions.

Example

```
MAIN
DETECTION 1,2,3,4
APROG immob
APROG analyze
FND
```

[*] [time] DILUTE position1 position2 mixpos percent

Mixes two samples in a third position. Used for diluting and mixing.

Usage: DEFINE APROG and MAIN blocks.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position1	Rack position for sample 1.
position2	Rack position for sample 2.
mixpos	Rack position for the mixed product.
percent	Final percentage concentration of sample 1. Range 5-95%.

The final volume of mixed product is fixed at 200 µl. Thus **DILUTE r1a1 r1a2 r1a3 20** takes 40 µl from r1a1 and 160 µl from r1a2 and mixes them in position r1a3.

A DILUTE command is essentially equivalent to two TRANSFER commands followed by a MIX command. DILUTE is however optimized for best performance with the fixed final volume of 200 μ l.

DILUTE issued in a MAIN block will not be recorded in the event log.

The dilution accuracy may be reduced if the two solutions being mixed have significantly different viscosities.

Example

DEFINE APROG incubation FLOW 25 *0:30 DILUTE r1a1 r1a2 r1b1 50 5:00 INJECT r1b1 50 ! inject 5 min after mixing sample END Appendix F Method language reference DIPNEEDLE position

DIPNEEDLE position

Predips needle in operator defined vial to decrease carry-over effects.

Usage: **DEFINE APROG** block.

Parameters

position Position in which needle is to be dipped.

10 μ l solution is aspirated into the needle from the predip position to rinse the needle. Use this command in connection with repeated sampling from one position where the sample solution differs greatly from buffer in refractive index, pH, ionic strength etc.

Example

DEFINE APROG predip FLOW 25 DIPNEEDLE r1a2 Isample buffer INJECT r1a1 50 END

END

Defines the end of a block.

Usage: Block definition.

ENDLOOP

Defines the end of a loop construction in the $\ensuremath{\mathsf{MAIN}}$ block.

Usage: MAIN block.

EXTRACLEAN

Performs extra cleaning of the IFC.

Usage: DEFINE APROG block.

When used, **EXTRACLEAN** must always be placed directly after the injection command to which it refers. The cleaning procedure will be executed directly after the injection.

Example

DEFINE APROG injection FLOW 20 INJECT r1a1 30 EXTRACLEAN !extra clean-up after injection END

[*] [time] FLOW flowrate [option ...]

Sets flow rate.

Usage: DEFINE APROG and MAIN blocks.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
flowrate	Flow rate in µl/min. Range 0-100 µl/min.

Options

-f	Fill continuous flo	w pump before sto	rting flow.

The FLOW command is obligatory in a DEFINE APROG block, and may only be preceded by the commands CAPTION, CURVE, KEYWORD, MODE, PARAM and SCALE.

The time specification is not supported by FLOW used in a MAIN block or by the first FLOW command in an APROG.

Between APROGs in the MAIN block, the flow rate is set to $10 \,\mu$ /min by default. Use a FLOW command in the MAIN block if a different flow rate is required.

Example

DEFINE APROG sample_inject FLOW 10 INJECT r1a1 10 END Appendix F Method language reference [*] [time] FLOWPATH fc

[*] [time] FLOWPATH fc

Sets the buffer flow path.

Usage: **DEFINE APROG** block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
fc	Flow cells to be included in the path. Values "1", "2", "3", "4",

FLOWPATH directs buffer flow through the specified flow cells but does not affect the detection mode. Use **DETECTION** in the **MAIN** block to set both detection mode and flow path.

"1,2", "3,4" and "1,2,3,4".

IMPORTANT! FLOWPATH does not alter the detection mode set by **DETECTION** in MAIN. In single channel detection mode, it is possible to set the flow path to cells where data is not collected. See Section E.4.1 for more details.

Flow path changes are local to the current **APROG**. When the **APROG** is completed, the flow path is restored to the setting that applied at the start of the **APROG**.

The flow path setting can be temporarily overridden by a variable contact time INJECT command. The flow path is set to the requirements of the INJECT command for the duration of the sample injection (see Section E.4.1).

Example

DEFIN	E APROG analytes	
	FLOW 25	
	FLOWPATH 1	
	INJECT r1a1 50	!from r1a1 to Fc1
	FLOWPATH 2	
	INJECT r1a2 50	!from r1a2 to Fc2
	FLOWPATH 3	
	INJECT r1a3 50	!from r1a3 to Fc3
END		
MAIN		
	DETECTION 1,2,3,4 APROG analytes	Imultichannel mode
END		

FLUSH

Runs the working tool *Flush* (see Section 7.2.1).

Usage: MAIN block.

GO name

Displays a button for "continue" function in an ALERT box.

Usage: **DEFINE ALERT** block.

Parameters

name Text of up to 10 characters which will be displayed as the name of the button.

Example

DEFINE ALERT demo LTEXT This text is left-adjusted CTEXT This text is centered RTEXT This text is right-adjusted **GO OK** STOP CANCEL

END

[*] [time] INJECT position volume

General purpose sample injection.

Usage: DEFINE APROG block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position	Rack position for sample.
volume	Volume to be injected, or a list of up to four volumes separated by commas for variable contact time injections (see Section E.4.3). Range 5-325 $\mu l.$

Sample consumption is injected volume + 30 μ l.

Example

DEFINE APROG immob FLOW 5 DILUTE r1a5 r1a6 r1b1 50 INJECT r1b1 35 * INJECT r2a1 35 5:00 INJECT r1c1 35 END

KEYWORD header value

Defines column and search keyword in report point table.

Usage: DEFINE APROG block.

Parameters

|--|

value Column content, specified as a variable or a constant value.

The header parameter may not be supplied as a variable.

This command can be used to record concentrations for evaluation.

Example

```
DEFINE APROG report
PARAM %conc
KEYWORD Antibody Mab-451
KEYWORD Conc %conc
FLOW 10
* INJECT r1a1 10
-0:15 RPOINT baseline -b
0:30 RPOINT plateau
END
```

[*][time] KINJECT position volume disstime

Low dispersion sample special injection for kinetic applications.

Usage: DEFINE APROG block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position	Rack position for sample.
volume	Volume to be injected, or a list of up to four volumes separated by commas for variable contact time injections (see Section E.4.3). Range 10-250 $\mu l.$
disstime	Dissociation time (for buffer flow through flow cell). Range 1-100 000 s.

The **KINJECT** command uses three air segments separating sample from buffer in the autosampler tubing to minimize sample dispersion and improve injection performance. A controlled dissociation time is specified after the injection, during which the sensorgram will not be disturbed by the automatic washing operation following the injection.

Sample consumption is injected volume + 40 μ l.

Example

DEFINE A	PROG kinetics 1	
	FLOW 10	
*	KINJECT r1a1 30 240	!4 min dissociation
-0:20	RPOINT baseline	
	INJECT r1a3 5	!Regeneration
END		-

LIFETIME

Displays the time for which a message box has been active.

Usage: DEFINE MESSAGE block.

This command is recommended for development purposes only. It may be used to determine suitable starting values for the **CLOCK** command.

Example

DEFINE MESSAGE develop LTEXT This process has been running for LIFETIME FND Appendix F Method language reference LOOP name order command [...] ENDLOOP

LOOP name order command [...] ENDLOOP

Repeats a sequence of one or more commands, using parameters as specified in **DEFINE LOOP**.

Usage: MAIN block.

Parameters

name	Name of the LOOP as specified in DEFINE LOOP.						
order	One of the keywords STEP, ORDER or RANDOM. This parameter defines the order in which rows in DEFINE LOOP will be handled (see also Section E.3.3):						
	STEP	Step through the variable sets and then repeat according to the TIMES command.					
	ORDER	Repeat the first variable set according to the TIMES command, then the second set and so on.					
	RANDOM	work through the variable sets in random order.					
command	Volume to separated Section E.4	be injected, or a list of up to four volumes by commas for variable contact time injections (see 1.3). Range 10-250 µl.					

Commands within the LOOP construction require parameters in the form of variable names. The names used in the MAIN block must be the same as those declared in the corresponding DEFINE LOOP.

Example

DEFINE LOOP cycle								
	LPARAM TIMES 3	%sample %pos %			ol			
		Sample1	r1a1	10				
		Sample2	r1a2	15				
		Sample3	r1a3	10				
END								
MAIN								
	DETECTION 1							
LOOP cycle RANDOM								
	APRO	G analyze	%sam	ple	%pos	%vol		

ENDLOOP END
LPARAM variable...

Declares variables used in DEFINE LOOP.

Usage: DEFINE LOOP block.

Parameters

variable Name of the variable used in the DEFINE LOOP block. See Section E.1.2 for variable naming rules.

The LPARAM command must always be the first command in a DEFINE LOOP block, and may not be used more than once in one block.

Example

DEFINE LOOP cycle LPARAM %sample%pos %vol TIMES 3 Sample1 r1a1 10 Sample2 r1a2 15 Sample3 r1a3 10 END MAIN DETECTION 1 LOOP cycle RANDOM APROG analyze %sample %pos %vol ENDLOOP

END

LTEXT [text]

Writes left-aligned text in an ALERT or MESSAGE box.

Usage: DEFINE ALERT and DEFINE MESSAGE blocks.

Parameters

text Text containing up to 40 characters. A blank line is inserted in the **MESSAGE** box if text is omitted.

Example

DEFINE ALERT demo LTEXT This text is left-adjusted CTEXT This text is centered RTEXT This text is right-adjusted GO OK STOP CANCEL Appendix F Method language reference MAIN

MAIN

Defines the ordering of APROGs and commands in a method.

Usage: Block definition.

Syntax

MAIN other commands END

Each method must contain one and only one MAIN block.

Commands in the MAIN block are not recorded in the sensorgram or the event log. Sensorgram and event log recording are active only during execution of an APROG which is called from the MAIN block.

MESSAGE [name] [parameter ...]

Displays a MESSAGE box.

Usage: MAIN block.

Parameters

name Name of the MESSAGE box as specified in DEFINE MESSAGE.

parameter Value for display in the MESSAGE box.

Parameters supplied to the MESSAGE must correspond sequentially to the variables declared in the PARAM command in DEFINE MESSAGE.

Within a LOOP construction, parameters may be supplied as either constants or variable names. Variable names must be the same as those declared in the corresponding DEFINE LOOP. Outside a LOOP, parameters must be supplied as constant values.

The message box remains on the screen until a new message box or an alert box is displayed or the method ends. A MESSAGE command with no parameters will erase any existing message box from the screen.

```
Example
DEFINE MESSAGE no_break
LTEXT Do not interrupt this cycle!
END
MAIN
MESSAGE no_break
APROG unbroken
MESSAGE
Iclear message box
...
END
```

[*][time] MICRORECOVER pos1 pos2 pos3 pos4 contact [option]

Performs recovery of surface-bound material, in a small recovery volume.

Note: This command is retained for reasons of back-compatibility. The newer commands MS_RECOVER and MSP_RECOVER commands are preferred for analyte recovery. These have been optimized to ensure the highest quality recovery, in a smaller volume (2 μl) than with MICRORECOVER.

This command should always be preceded by a **BYPASSWASH** to minimize contamination of the recovered material.

Usage: DEFINE APROG.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
pos1	Rack position where the recovered sample will be placed.
pos2	Rack position for waste.
pos3	Rack position for regeneration solution.
pos4	Rack position for wash solution.
contact	Contact time for regeneration solution on the sensor surface. Interval 1-1000 s.

Options

- -v vol Recovery volume in µl. Default value 4. Interval 3-7.
- -d *vol* Dispense volume to ensure that the regeneration solution is placed over the sensor surface: this is equivalent to the dead volume between the IFC valves and the flow cell center. Default value 13. Interval 10-21.

Example

DEFINE APROG recover FLOW 10 QUICKINJECT r1a1 10 EXTRACLEAN BYPASSWASH r2f5 r2f6 r2f7 MICRORECOVER r2a1 r2b1 r2f3 r2f4 30 END

[*] [time] MICROTRANSFER position1 position2 volume

Transfers a small volume of reagent between autosampler rack positions. In methods for recovery/MS applications, may be used for example, to add matrix to analyte deposited directly on a MALDI target (see Appendix H), or to add an enzyme solution for pre-MS digestion of recovered sample. May also be used to wash the needle directly after a microtransfer operation.

Usage: **DEFINE APROG** block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position1	Rack position for the transfer solution.
position2	Target rack position, i.e. position of recovered analyte or w to specify needle wash.
volume	Volume of solution to be transferred. Range 1-10 µl.

The MICROTRANSFER command collects 15 μ l of reagent (separated from the running buffer by a 3 ml air segment) in the autosampler and dispenses the specified volume to a defined position (flow rate = 100 μ l/min).

Sample consumption is 15 μ l.

```
Example
```

```
DEFINE APROG MSprep
     FLOW 10
     MS_INJECT rr2 rr1 120 10
     MS WASH rr3 rr5 rr2
     MS_RECOVER rr4 rr2 rr6 30 r1b2 1,2,3,4
     FLOW 1
     MICROTRANSFER rr1 r1a1 1
                                 ladd 1ul matrix
     MICROTRANSFER r2a1 w 10
                                 !wash needle
END
MAIN
     RACK 1 MALDI
     RACK r REAG A
     RACK 2 THERMO A
     DETECTION 1,2,3,4
     APROG MSPrep
END
```

[*] [time] MIX position volume

Mixes sample in autosampler vial.

Usage: DEFINE APROG and MAIN blocks.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position	Rack position for mixing.
volume	Volume in µl to mix. Range 15-450 µl.

MIX issued in a MAIN block will not be recorded in the event log.

Example

```
DEFINE APROG sample_mixing
FLOW 10
TRANSFER r1a1 r1a2 60
TRANSFER B r1a2 30
MIX r1a2 75
INJECT r1a2 40
```

END

Appendix F Method language reference MODE option [...]

MODE option [...]

Sets the data collection parameters for an APROG.

Usage: **DEFINE APROG** block.

Options

- *-dn* Reading rate interval for each sensorgram in seconds. Range 0.1–10 s.
- *-In* Maximum number of collected data points at the current reading rate interval (see Section 9.8). Range 100–15000. Default 12000.

If MODE is set in APROG any settings specified with the *Run:Data collection rate* menu command are overridden. If MODE is omitted, the settings specified with the menu command apply. Using a MODE command at the beginning of an APROG will ensure that the reading rate is correct for the method.

MODE may only be preceded by the commands CAPTION, PARAM, SCALE and KEYWORD.

Example

```
DEFINE APROG low_resolution

MODE -d10 ! reading rate 1 point/10 s

FLOW 10

INJECT r1a1 10

END
```

[*] [time] MS_INJECT position1 position2 volume flow

Sample injection command for analyte recovery from the IFC. Low sample consumption and minimized dissociation of captured analyte. Optimized for downstream use in mass spectrometry (MS) applications.

Usage: DEFINE APROG block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position1	Rack position for wash solution (MS-compatible buffer). Reagent consumption 150 µl.
position2	Rack position for sample.
volume	Volume of sample. Range 2-225 µl.
flow	Flow rate of sample injection. Range 1-100 µl/min.

MS_INJECT begins by collecting 3 μ l air and 150 μ l MS-compatible buffer, to separate sample from the running buffer and create a stable baseline. After sample injection, flow cells are washed briefly with MS-compatible buffer (6 sec at 120 μ l/min) and flow is set to zero, to minimize analyte dissociation.

Notes: This command should be used together with MS_WASH and MS_RECOVER.

If MS_INJECT is not followed by MS_WASH and/or MS_RECOVER, FLOWPATH and FLOW must be redefined.

The term MS-compatible buffer is used in the context of analyte recovery operations intended for downstream MS applications (where traces of salts, detergents and other contaminants must be avoided). This buffer should also be used at defined points in the MS_WASH and MS_RECOVER commands, but even if analyte recovery is not intended for MS applications and an MS-compatible buffer is not required, it is important that the same buffer is used at the indicated stages in all three commands. This will greatly facilitate the evaluation of bound and recovered analyte levels in the sensorgram.

Sample consumption is injected volume + 3 μ l.

Example

```
DEFINE APROG MSprep
FLOW 10
MS_INJECT rr2 rr1 120 10
MS_WASH rr3 rr5 rr2
MS_RECOVER rr4 rr2 rr6 30 r1b2 1,2,3,4
END
```

MAIN

```
RACK 1 MALDI
RACK r REAG_A
RACK 2 THERMO_A
DETECTION 1,2,3,4
APROG MSPrep
END
```

[*] [time] MS_RECOVER pos1 pos2 pos3 time pos4 flowcell

Supports recovery of captured analyte from the IFC. Analyte is separated from the running buffer and recovered in a volume of only 2 μ l. Optimized for downstream use in MS applications.

Usage: **DEFINE APROG** block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
pos1	Rack position for water, consumption 180 µl.
pos2	Rack position for MS-compatible buffer, consumption 273 $\mu l.$
pos3	Rack position for recovery solution, consumption 18 $\mu l.$
time	Contact time of recovery solution with captured analyte at zero flow. Range 1-86400 sec (24 hrs).
pos4	Rack position for recovered analyte.
flowcell	Flow cell combination during recovery. Allowed combinations 1; 2; 3; 4; 1,2; 1,2,3; 1,2,3,4; 3,4.

The flow is set to zero and the IFC is set to bypass flow to avoid contamination of the recovered sample with running buffer. Flow cells are washed with MS-compatible buffer and air and loaded with 2 μ l of recovery solution for the user-defined time. The analyte-containing recovery solution (flanked by air segments) is eluted from the flow cells using low reversed flow (20 μ /min) and

transported to the autosampler needle. The 2µl of recovered analyte solution is dispensed into the designated position (sample vial or MALDI target) and a baseline is established using MS-compatible buffer.

Notes: Although the recovery incubation time can be set to as long as 24 hours, it may typically be of the order of 30 sec.

For optimal recovery of analyte for MS applications, MS_RECOVER should be used together with, and following, MS_INJECT and MS_WASH in the method.

If MS_INJECT is not followed by MS_WASH and/or MS_RECOVER, FLOWPATH and FLOW must be redefined.

Example

DEFINE APROG MSprep FLOW 10 MS_INJECT rr2 rr1 120 10 MS_WASH rr3 rr5 rr2 MS_RECOVER rr4 rr2 rr6 30 r1b2 1,2,3,4 END

MAIN

RACK 1 MALDI RACK r REAG_A RACK 2 THERMO_A DETECTION 1,2,3,4 APROG MSPrep

```
END
```

[*] [time] MS_WASH pos1 pos2 pos3

A rapid procedure to wash the IFC channels (but not the flow cells) with three user-defined solutions in preparation for MS_RECOVER.

Usage: DEFINE APROG block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
pos1	Rack position for wash solution 1, consumption 30 μ l.
pos2	Rack position for wash solution 2, consumption 40 µl.
pos3	Rack position for MS-compatible buffer, consumption 25 μl + 150* $\mu l.$

* In the first step of this command, an additional volume of 150 µl is taken from position 3 to separate the wash solutions from the running buffer.

The three sequential washes of the IFC are designed to prevent any possible carry-over of material from the injected sample to the recovered analyte. The first two solutions can be mild acidic or basic solutions (*e.g.* 50 mM NaOH or 1-5% trifluoroacetic-, formic- or acetic acid), or low concentration organic solvents (10-20% acetonitrile or methanol). The final wash solution should be MS-compatible buffer.

Note: If MS_WASH is not followed by MS_RECOVER or a second MS_WASH, FLOWPATH and FLOW must be redefined.

Example

```
DEFINE APROG MSprep

FLOW 10

MS_INJECT rr2 rr1 120 10

MS_WASH rr3 rr5 rr2

MS_RECOVER rr4 rr2 rr6 30 r1b2 1,2,3,4

END

MAIN

RACK 1 MALDI

RACK r REAG_A

RACK 2 THERMO_A

DETECTION 1,2,3,4
```

END

[*] [time] MSP_INJECT position1 volume flow

Sample injection command for analyte recovery from the Surface Prep unit, in the type 2 configuration (SP_2). Low sample consumption and minimized dissociation of captured analyte. Optimized for downstream use in mass spectrometry (MS) applications.

Usage: DEFINE APROG and MAIN block.

APROG MSPrep

Parameters

Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
Rack position for sample.
Volume of sample. Range 2-225 µl.
Flow rate of sample injection. Range 1-100 $\mu\text{l/min}.$

MSP_INJECT collects the defined sample volume plus 3 μ l extra from rack position 1 and injects this into the flow cell. Dispersion of sample is minimized by

flanking 3 µl air segments. After the sample injection is complete, the flow cell is washed briefly with running buffer.

Notes: For efficient capture of analyte, a low flow rate (1-5 µl/min) is generally required.

To adjust for the increased height of the Surface Prep unit flow cell compared to the IFC, the contact time of the sample injection should be increased approximately 2.5-fold in order to achieve equivalent binding conditions.

Remember that a dummy chip must be docked in the instrument and that FLOW and DETECTION must also be set when using MSP_INJECT.

It is important to specify the correct rack command (SP_2) in the RACK 2 line of the method. If SP_1 is entered by mistake, this will not be detected as an error by the **PreRun Method** menu command.

Sample consumption is injected volume + 3 μ l.

Example

```
DEFINE APROG SPuPrep

FLOW 5

MSP_PRIME

MSP_INJECT rr1 35 5

MSP_RECOVER rr2 rr3 25 r1n20

END

MAIN

RACK 1 MALDI

RACK r REAG_A

RACK 2 SP_2

DETECTION 1,2,3,4

APROG SPuPrep

END
```

[*] [time] MSP_PRIME

Primes the Surface Prep unit system before running an analyte recovery experiment.

Usage: MAIN and DEFINE APROG block.

Parameters

time Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.

MSP_PRIME washes the injection port and flow cell three times and leaves the flow cell filled with running buffer.

Appendix F Method language reference [*] [time] MSP_RECOVER postion1 position2 time position3

Example DEFINE APROG SPuPrep FLOW 5 MSP_PRIME MSP_INJECT rr1 35 5 MSP_RECOVER rr2 rr3 25 r1n20 END MAIN RACK 1 MALDI

RACK r REAG_A RACK 2 SP_2 DETECTION 1,2,3,4 APROG SPuPrep END

[*] [time] MSP_RECOVER postion1 position2 time position3

Supports recovery of captured analyte from the Surface Prep unit, in the type 2 configuration (SP_2). Analyte is separated from the running buffer and recovered in a volume of 2 µl. Optimized for downstream use in MS applications.

Usage: DEFINE APROG and MAIN block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position1	Rack position for MS-compatible buffer, consumption 180 $\mu\text{l}.$
position2	Rack position for recovery solution, consumption 17 $\mu l.$
time	Contact time of recovery solution with captured analyte at zero flow. Range 1-86400 sec (24 hrs).
position3	Rack position for recovered analyte.

The MSP_RECOVER command starts by emptying the injection port from residues of remaining liquid and washing the injection port with MS-compatible buffer. The flow cell is then flushed with the MS-compatible buffer before a 2 μ l segment of recovery solution is incubated in the flow cell for a user-specified time and drawn back into the autosampler needle. After sample recovery, the flow cell and injection port are filled with running buffer to ensure that the sensor chip can be left in the Surface Prep unit overnight without drying out.

Notes: Although the recovery incubation time can be set to as long as 24 hours, it may typically be of the order of 30 sec.

Remember that a dummy chip must be docked in the instrument and that FLOW and DETECTION must also be set when using MSP_RECOVER.

It is important to specify the correct rack command (SP_2) in the RACK 2 line of the method. If SP_1 is entered by mistake, this will not be detected as an error by the **PreRun Method** menu command.

Example

DEFINE APROG SPuPrep FLOW 5 MSP_PRIME MSP_INJECT rr1 35 5 MSP_RECOVER rr2 rr3 25 r1n20 END MAIN RACK 1 MALDI RACK 7 REAG_A RACK 2 SP_2 DETECTION 1,2,3,4 APROG SPuPrep END

NORMALIZE position

Runs the working tool Normalize (see Section 7.2.1).

Usage: MAIN block.

Parameters

position Rack position for the glycerol solution (BIAnormalizing solution).

If normalization does not succeed, the method will be terminated.

Appendix F Method language reference PARAM variable ...

PARAM variable ...

Declares variables used in an ALERT, APROG or MESSAGE blocks.

Usage: DEFINE ALERT, DEFINE APROG, and DEFINE MESSAGE block.

Parameters

variable Name of the variable. See Section E.1.2 for variable naming rules.

A block may contain as many **PARAM** commands as required. All **PARAM** commands should precede any other commands in the block.

For variables used in a **DEFINE LOOP** block, see **LPARAM**.

Example

DEFINE APROG injection PARAM %position %volume FLOW 5 INJECT %position %volume END MAIN DETECTION 1

APROG injection r1a1 20 APROG injection r2a5 35 END

PRIME

Runs the working tool Prime (see Section 7.2.1).

Usage: MAIN block.

[*] [time] QUICKINJECT position volume

Fast inject with low sample consumption.

Usage: **DEFINE APROG** block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position	Rack position of sample.
volume	Volume to be injected, or a list of up to four volumes separated by commas for variable contact time injections (see Section E.4.3). Range 5-325 µl.

This injection uses a single air segment separating the sample from buffer to reduce sample consumption and speed up the injection command. Do not use **QUICKINJECT** in applications where avoidance of sample dispersion is critical.

Sample consumption is injected volume + 10 μ l.

Example

DEFINE APROG quickie FLOW 20 QUICKINJECT r1a1 500 END

RACK base type

Sets the autosampler rack type.

Usage: MAIN block.

Parameters

base	1 = left position 2 = right position R = middle position (reagent rack)
type	THERMO_A = thermo-rack type A THERMO_B = thermo-rack type B THERMO_C = thermo-rack type C MICRO = microplate REAG_A = reagent rack SP_2 = Surface Prep unit, type 2 configuration

Note: Details of RACK commands for software-supported types of MALDI targets can be found in Appendix H.

The RACK command defines the rack positions that are accepted in method prerun. If no RACK command is used, positions are accepted according to the current settings under **Command:Define Rack Base** in the manual control interface (see Section 4.2.4). This ensures that the current settings are valid for the method.

The RACK command can be repeated to define alternative permitted racks. The rack positions accepted in method pre-run will however then be restricted to the positions that are common to the specified racks. For example, with the commands RACK 1 THERMO_A and RACK 1 MICRO, the position r1f10 is not valid (f10 exists in a microplate but not in thermo-rack A).

If a **RACK** command is used, all racks that are referenced in the method must be specified (e.g. if the **MAIN** block includes only **RACK 1 THERMO_A**, positions in rack 2 will not be valid).

If the current rack settings when the method is started do not correspond to the settings requested in the RACK command, the method will prompt for rack settings using the *Define Rack Base* dialog box from the manual control interface (see Section 4.2.4). If you choose *Cancel* from this dialog box, the method will be aborted. This prompt serves as a reminder that the racks may need to be changed: the only settings which can be entered in the dialog box are those specified in the RACK command.

The RACK command may only be preceded by an ALERT command within the MAIN block. Thus you cannot change rack settings between APROGs in a method.

Example

MAIN RACK 1 thermo_A RACK 2 thermo_B RACK R reag_A APROG analysis

END

RINSE

Runs the working tool *Rinse* (see Section 7.2.1).

Usage: MAIN block.

time RPOINT id [option ...]

Sets a report point.

Usage: DEFINE APROG block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS
id	Identification (up to 30 characters, alphanumeric or underscore). The identification is recorded in the report point table.

Options

 -wn Time window for calculation of slope, mean and standard deviation. Value n in format H:MM:SS, range 0-9:00:00. Deformative 0:00:05 (5 s). -cn Set report point in curve number n. Curves are identified by number in the order of their creation: n = 0 : sensorgram n = 1 : first status curve n = 2 : second status curve and so on. 	-b	Treat point as baseline. Subsequent points will be calculated relative to this point.
 -cn Set report point in curve number n. Curves are identified b number in the order of their creation: n = 0 : sensorgram n = 1 : first status curve n = 2 : second status curve and so on. 	-wn	Time window for calculation of slope, mean and standard deviation. Value n in format H:MM:SS, range 0-9:00:00. Default value 0:00:05 (5 s).
n = 0 : sensorgram n = 1 : first status curve n = 2 : second status curve and so on.	-cn	Set report point in curve number <i>n</i> . Curves are identified by number in the order of their creation:
		n = 0 : sensorgram n = 1 : first status curve n = 2 : second status curve and so on.

A time window of 0 gives a report point with values from a single data point. A single data point is also used if the window does not include at least one data point on either side of the report point position.

Report points are set on all sensorgrams in multichannel mode.

Example

DEFINE APROG report KEYWORD Mab-451 FLOW 10 * INJECT r1a1 10 -0:15 RPOINT baseline -b 0:30 RPOINT plateau END Appendix F Method language reference RTEXT [text]

RTEXT [text]

Writes right-aligned text in an ALERT or MESSAGE box.

Usage: DEFINE ALERT and DEFINE MESSAGE blocks.

Parameters

text Text containing up to 40 characters. A blank line is inserted in the box if *text* is omitted.

Example

DEFINE MESSAGE demo TITLE DEMONSTRATION BOX LTEXT This text is left-adjusted CTEXT This text is centered RTEXT This text is right-adjusted END

SCALE axis min max [option ...]

Sets the default scale for a sensorgram or curve.

Usage: **DEFINE APROG** block.

Parameters

axis	Axis to scale. Permitted values:
	x abscissa
	y left hand ordinate
	o right-hand (optional) ordinate
min	Minimum value on axis.
max	Maximum value on axis.

Options

-ltext	Use <i>text</i> as label on axis.
-tvalue	Set ticks at interval value.
-a	Autoscale.

For cycles where the **SCALE** command is used, the settings define the default scale both during the run and when the result file is opened. After changing the scale, the method scale can be restored using the *Method* option in the *View:Scale* dialog box.

For cycles where SCALE is not used, the default scale setting is Auto.

The right hand (optional) ordinate is used for curves activated with the -o option in the **CURVE** command.

Example

DEFINE APROG fix_scale SCALE y 10000 20000 FLOW 10 INJECT r1a1 10 END

STOP name

Displays a button for "abort" function in an ALERT box.

Usage: DEFINE ALERT block.

Parameters

name Text of up to 10 characters which will be displayed as the name of the button.

Example

DEFINE ALERT demo TITLE DEMONSTRATION BOX LTEXT This text is left-adjusted CTEXT This text is centered RTEXT This text is right-adjusted GO OK STOP Cancel

END

[*] [time] TARGETWASH position1 position2

Washes residues of salt and other potential contaminants that may be deposited on a MALDI target following analyte recovery. The target wash solution (*e.g.* 0.1% TFA) rapidly dissolves the contaminating substances and is quickly removed from the deposited analyte. The recovered analyte is normally allowed to dry on the MALDI target surface before commencing **TARGETWASH**.

Usage: DEFINE APROG block.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
position1	Rack position for wash solution, consumption 70 μ l.
position2	MALDI target position to be washed.

The segment of target wash solution that is used to wash the target is separated from the running buffer by 3μ l of air and an additional 50 μ l segment of target wash buffer. Target wash solution (5 μ l) is dispensed onto the specified MALDI target position (See Appendix H) and allowed to sit for 2 seconds, after which it is aspirated back into the needle and discarded into the waste position.

```
DEFINE APROG MSprep

FLOW 10

MS_INJECT rr2 rr1 120 10

MS_WASH rr3 rr5 rr2

MS_RECOVER rr4 rr2 rr6 30 r1b2 1,2,3,4

TARGETWASH rr8 r1b2

END

MAIN

RACK 1 MALDI

RACK 7 REAG_A

RACK 2 THERMO_A

DETECTION 1,2,3,4

APROG MSPrep

END
```

TEMP degrees

Sets the temperature at the flow cell.

Usage: MAIN block.

Parameters

degrees Required temperature (°C). Range 4-40 °C.

The TEMP command causes the method to wait until the temperature has stabilized at the requested value. This takes typically about 1 hour for a change of 5 °C. Temperature changes can only be requested from the MAIN block (between APROGs). Buffer flow continues at 10 μ l/min during the temperature stabilization process.

Do not set the temperature to lower than 20°C below ambient. The instrument is not guaranteed to maintain a temperature interval greater than 20°C, and requesting a lower temperature can result in an indefinite wait time. To stop the method during temperature stabilization, you must use the emergency stop Ctrl-Break (see Section 4.4.12).

The **TEMP** command does not affect the temperature in the autosampler compartment. Samples and buffer are fully equilibrated to the flow cell temperature during passage through the IFC.

Example

This example uses a LOOP construction to repeat an analysis at a series of temperatures.

DEFINE APROG analysis FLOW 25 ... FND DEFINE LOOP temp series LPARAM %dearees TIMES 1 5 10 15 25 END MAIN LOOP temp_series STEP **TEMP %degrees** NORMALIZE r2f1 APROG analysis ENDLOOP FND

TIMES count

Sets the repeat count for sets of variables.

Usage: DEFINE LOOP block.

Parameters

count Repeat count. Values 1-5000 (default 1).

The repeat count applies to subsequent rows or variables within the **DEFINE** LOOP until a new repeat count is set. The repeat count may be set as many times as required in a **DEFINE LOOP**. Setting a repeat count of 3 means that subsequent rows will be processed three times.

```
DEFINE LOOP cycle
     LPARAM %sample %pos %vol
     TIMES 3
             Sample1 r1a1 10
             Sample2 r1a2 15
             Sample3 r1a3 10
END
```

```
MAIN
     DETECTION 1
     LOOP cycle RANDOM
       APROG analyze %sample %pos %vol
     ENDLOOP
  END
```

TITLE text

Sets the title bar text for an ALERT or MESSAGE box.

Usage: DEFINE ALERT and DEFINE MESSAGE blocks.

Parameters

Text containing up to 40 characters. The title may not be left text blank.

Example

DEFINE ALERT demo TITLE DEMONSTRATION BOX LTEXT This text is left-adjusted CTEXT This text is centered RTEXT This text is right-adjusted GO OK STOP Cancel END

[*][time] TRANSFER from-pos to-pos volume

Transfers sample between autosampler vials.

Usage: DEFINE APROG and MAIN blocks.

Parameters

time	Time specification in format HH:MM:SS, MMM:SS or SSS. An asterisk (*) before the time specification sets this event time as a zero time reference for subsequent time specifications.
from-pos	Rack position to transfer from.
to-pos	Rack position to transfer to.
volume	Volume in μl to transfer. Range 5-450 $\mu l.$

The special value B for the *from-pos* parameter transfers liquid from the eluent vessel.

TRANSFER issued in a MAIN block will not be recorded in the event log.

Example

DEFINE APROG recovery FLOW 10 TRANSFER r1b1 r1a1 200 INJECT r1a1 100 END

UNCLOG

Runs the service tool Unclogging (see Section 7.2.3).

Usage: MAIN block.

WAIT time

Waits for a specified time.

Usage: DEFINE APROG and MAIN blocks.

Parameters

time Wait time in the format HH:MM:SS, MM:SS or SSS.

Flow continues during a wait.

Within a LOOP construction, parameters may be supplied as either constant values or variable names. Variable names must be the same as those declared in the corresponding DEFINE LOOP. Outside a LOOP, parameters must be supplied as constant values.

Example

```
DEFINE LOOP wait_time

LPARAM %delay

TIMES 2

5:00

10:00

END

MAIN

DETECTION 1

WAIT 2:00

LOOP wait_time STEP
```

WAIT %delay !vary wait time APROG analyze %sample %pos %vol APROG regenerate ENDLOOP

END

[time] WASH item

Washes IFC or autosampler needle.

Usage: DEFINE APROG and MAIN blocks.

Parameters

time Time specification in format HH:MM:SS, MMM:SS or SSS.

item

Item to wash: f = flow cell area i = all IFC channels l = IFC sample loop n = needles = IFC sample line.

WASH f and WASH i require a non-zero flow rate. An attempt to execute these commands with the flow rate set to zero results in a run-time error.

Example

```
DEFINE APROG immob

FLOW 5

DILUTE r1 a5 r1a6 r1b1 50

TRANSFER r1a6 r1b1 70

MIX r1b1 115

INJECT r1b1 35

WASH n ! extra needle wash

INJECT r2a1 35

INJECT r1c1 35

END
```

Appendix F Method language reference [time] WASH item

Appendix G The Surface Prep unit

The Surface Prep unit (Figure G-1) is designed for:

 Immobilization of small molecules on the sensor chip surface in a four flow cell format, typically required for indirect (inhibition) assay formats. In this format, the ligand attached to the sensor surface, is the same as or an analogue of the analyte, so that traces of ligand in the IFC flow channels can invalidate sensitive concentration measurements. At the high concentrations (mM) frequently required for immobilization of small molecules, it can be difficult to remove all traces of ligand from the IFC. Immobilization of the ligand in the Surface Prep unit avoids these problems, since the ligand solution does not come into contact with the IFC.

High capacity immobilization of ligand using a large area flow cell format, to maximize the amount of recovered analyte for mass spectrometry applications.

G.1 Description of the Surface Prep unit

The Surface Prep unit consists of a sensor chip holder that allows the sensor chip to be docked against one of two types of *flow cell carrier* (FCC), which correspond to the flow cell block on the IFC and form the flow cell(s) on the surface of the sensor chip. The FCC is directly connected to one of two types of *injection block*, which provide inlet port(s) for injection of solution using the autosampler needle, and outlet port(s) leading to a small waste beaker seated on the unit. The FCCs and injection blocks are easily exchangeable to enable efficient switching between the two configurations of the Surface Prep unit, as well as for maintenance purposes.

The temperature for immobilization may be controlled through external temperature regulation of the autosampler base (see Section 2.1.2). The base of the Surface Prep unit and the supporting plate for the sensor chip are made of aluminum, for efficient heat transfer.

Figure G-1. The surface Prep unit (SP_1 configuration shown)

G.2 Surface Prep unit configurations

All Biacore 3000 software operations that involve the Surface Prep unit are designed to function specifically with one of two hardware configurations of the unit. See Section G.5 for details on how to change between the two configurations of the Surface Prep unit.

Note: The user must ensure that the Surface Prep unit is assembled correctly according to the intended operation. Errors in hardware configuration will not be detected by the software.

The configuration of the Surface Prep unit is determined by a combination of the FCC and injection block used:

- Configuration SP_1 = FCC type 1 and injection block type 1
- Configuration SP_2 = FCC type 2 and injection block type 2

The two types of injection block are readily distinguishable (see descriptions and pictures in Sections G.2.1 and G.2.2). The two flow cell carrier types are very similar in appearance, but are clearly marked as **FCC 1** (for use in the SP_1 configuration), or **FCC 2** (for use in the SP_2 configuration).

Note: These are the only two possible functional configurations. It is important to avoid mismatches of the type 1 and type 2 hardware options.

G.2.1 Surface Prep unit configuration SP_1

In the SP_1 configuration, the combination of the type 1 FCC and injection block enable the Surface Prep unit to be used for immobilization purposes, presenting four flow cells, equivalent in area to those formed in the IFC. The type 1 FCC forms four flow cells on the surface of the sensor chip and is connected to four inlet and outlet ports via the type 1 injection block. The outlet port tubes are connected to the waste beaker via a cover that sits over the top of the beaker. These features are shown in Figure G-2.

Figure G-2. Configuration SP_1 of the Surface Prep unit.

The SP_1 configuration of the Surface Prep unit is designed for specialized immobilization purposes, which can only be performed using the *Immobilization in Surface Prep unit* wizard (Section 5.3.4). Once ligand has been immobilized using the Surface Prep unit (Section G.3), the sensor chip is docked in the instrument in the usual way for subsequent applications.

G.2.2 Surface Prep unit configuration SP_2

In the SP_2 configuration, the combination of the type 2 FCC and injection block enable the Surface Prep unit to be used for immobilization and analyte recovery operations using a single, large area flow cell format. In this configuration, the flow cell has an effective surface area that is 3.3 times larger than that of the four combined flow cells formed in the IFC, or in the SP_1 configuration of the Surface Prep unit. The SP_2 format is designed to enable the maximum amount of analyte to be recovered for downstream applications, such as mass spectrometry. The type 2 injection block provides one inlet and outlet port for the single flow cell formed by the type 2 FCC. Note that the single outlet tube connects to the waste beaker via a small hole in the lid. Since there is no cover for the waste beaker in this configuration, a plastic O-ring (supplied) may be used as an insert to stabilize the beaker within its recess. The hardware components for the SP_2 configuration of the Surface Prep unit are shown in Figure G-3.

Figure G-3. Configuration SP_1 of the Surface Prep unit

Immobilizations in the SP_2 configuration are performed using the *Immobilization in Surface Prep unit* wizard (Section 5.3.4). Analyte recovery can be performed either using the *Analyte Recovery* wizard (Section 5.4), or by writing an MDL method using the *MSP_PRIME, MSP_INJECT* and *MSP_RECOVER* commands (Appendix F).

Note: In all wizard-controlled operations using the Surface Prep unit, the configuration is fixed by the software and the user must ensure that this is matched by the hardware configuration. When writing an analyte recovery method, however, the user must ensure that the SP_2 configuration is set using the **RACK** method command (Appendix F), or in the **Command:Rack Base** dialog box (Sections 4.2.4 and 9.7)

G.3 Immobilizing ligand

G.3.1 Preparing for immobilization

1 Make sure the FCC is correctly mounted on the Surface Prep unit (Section G.5.3). Hold the Surface Prep unit with the label facing you (in the same orientation as it will be placed in the autosampler).

- 2 Pull the sensor chip slider all the way towards you.
- 3 Place the sensor chip on the chip holder with the label on the outside and the arrow pointing away from you. Make sure that the pin on the slider engages in the hole in the sensor chip carrier.
- 4 Slide the sensor chip slider all the way away from you. The sensor chip carrier will slide out of the cassette, positioning the sensor chip in line with the FCC.

5 Slide the docking slider all the way away from you. The FCC will be docked against the sensor chip.

6 Place the Surface Prep unit on the right-hand autosampler rack base and lock it in position with the slider lock.

G.3.2 Performing the immobilization

Dock a sensor chip in the IFC in the instrument. It does not matter which chip you use: solution will not be injected over the surface of this chip during the immobilization procedure.

Run the *Immobilization in Surface Prep* wizard (Section 5.3.4), selecting the appropriate configuration of the unit. Prepare immobilization reagents in autosampler racks as instructed in the wizard.

Notes: Immobilization in the Surface Prep unit cannot be performed in manual mode, or using an MDL method.

Water should be used in place of running buffer during immobilization in the Surface Prep unit.

G.3.3 After immobilization

- 1 Lift the Surface Prep unit out of the autosampler. Do not tilt the unit excessively, to avoid spilling liquid from the waste beaker in the unit.
- 2 Undock and remove the sensor chip.
- 3 Lift the waste cover (SP_1) or remove the waste beaker lid (SP_2) and remove and empty the waste beaker. Make sure the waste cover or lid is properly seated when you replace the beaker.

4 Clean the Surface Prep unit (Section G.5.1).

G.4 Analyte recovery

If the **SP_2** configuration of the Surface Prep unit is used for analyte recovery applications, a dummy sensor chip must also be docked in the instrument. When writing MDL methods for recovery, a flow and detection must also be set in the method. These parameters are handled automatically by the software when the **Analyte Recovery** wizard is used.

Since there is no SPR detection available, it is strongly recommended that the basic parameters for a new experimental system are always established using a sensor chip in the IFC before transferring and scaling up the assay to the Surface Prep unit. For more details on performing analyte recovery/MS applications using the Surface Prep unit, contact GE Healthcare.

G.5 Maintenance and configuration of the Surface Prep unit

G.5.1 Cleaning

Running the *Surface Prep Wash* procedure from *Tools:Working Tools* is recommended after completion of an operation in the Surface Prep unit to wash the flow channels and tubing. Follow the steps below to perform this procedure:

- 1 Dock Sensor Chip Maintenance (provided in the Biacore 3000 Maintenance Kit) in the Surface Prep unit, as described in Section G.3.1, steps 3-5.
- 2 Make sure another sensor chip is docked in the instrument. It does not matter which chip you use: solution will not be injected over the surface of this chip during the wash procedure.
- 3 Run Working Tools:Surface Prep Wash to wash the flow channels and tubing. Suitable cleaning agents will depend on the solubility of the substances used. Suggested solutions for small molecule immobilizations are 50% isopropanol + 10% formic acid in water and 50% DMSO in water. If protein ligands have been immobilized, the BIAdesorb solutions from the Biacore 3000 Maintenance Kit may be used. Note, however, that if analyte recovery is to be used for MS applications, this technique is very sensitive to traces of detergents such as the SDS present in the BIAdesorb solutions.
- 4 Lift the Surface Prep unit out of the autosampler. Do not tilt the unit excessively, to avoid spilling liquid from the waste beaker in the unit.
- 5 Undock and remove Sensor Chip Maintenance.

Lift the waste cover and remove and empty the waste beaker. Make sure the waste cover (SP_1) or lid (SP_2) is properly seated when you replace the beaker.

Keep the waste beaker holder and the waste cover free from salt deposits.

Periodically, remove the FCC (Section G.5.3) and clean the injection block and the aluminum plate opposite the injection block with distilled water and/or ethanol. Clean the FCC with distilled water.

The injection block can also be removed (Section G.5.4) and cleaned separately.

G.5.2 Storage

Store the Surface Prep unit in a plastic bag to keep the surfaces and flow channels free from dust.

G.5.3 Changing the flow cell carrier

The following instructions describe how to remove and replace the FCC. This may be carried out either to change the configuration of the Surface Prep unit by exchanging the type 1 and type 2 FCCs, or for routine maintenance.

- 1 Make sure the sensor chip has been removed from the Surface Prep unit.
- 2 Pull the service slider to the right, and push the docking slider into the *Lock* position to lock the injection block in the service position.

Note: If the injection block does not lock in position, make sure the docking slider is pulled out all the way towards you first.

3 Swing the FCC up off the back pin and then lift it off the injection block.

- 4 To replace the FCC, reverse step 3. Make sure the FCC is properly seated on the pins.
- 5 To release the injection block from the service position, pull the docking slider towards you.

G.5.4 Changing the injection block

The following instructions describe how to remove and replace the injection block. This may be carried out either to change the configuration of the Surface Prep unit by exchanging the type 1 and type 2 injection blocks, or for routine maintenance.

- 1 Make sure the sensor chip has been removed from the Surface Prep unit.
- 2 Lock the injection block in the service position and remove the FCC (Section G.5.3).
- 3 Using a 2.5 mm Allen key through the holes in the sensor chip holder, unscrew the two screws on the injection block.

- 4 Lift the injection block (together with the waste cover for type 1) off the Surface Prep Unit.
- 5 When exchanging or replacing the injection block, make sure it is properly seated then tighten the two screws.
G.6 Troubleshooting

If analyte recovery experiments run in the Surface Prep unit produce unsatisfactory results, check for the efficiency of immobilization by analyzing the sensor chip in the IFC.

If immobilization levels in the Surface Prep unit fall below expectations, check all of the connections for the injection block and make sure that these are tight and do not show any signs of leakage.

Make sure that your Surface Prep unit is regularly cleaned and maintained according to the instructions given in this appendix.

G.7 Chemical resistance

The wetted parts of the Surface Prep unit are:

Injection block	PEEK
FCC	Polystyrene with silicone rubber
	coating on the flow channels and
	docking surface
Waste tubing	Silicone rubber
Waste tubing connectors	Stainless steel
Waste beaker	Nalgene®

These materials are resistant to most aqueous solutions used in immobilization.

The following table specifies resistance to commonly used solvents. Resistance for longer times or to other chemicals than those in the table is not guaranteed.

Solution	Concentration	Resistance	
Acetonitrile	100%	continuous flow	
Dimethylformamide (DMF)	80%	30 min	
Dimethyl sulphoxide (DMSO)	100%	30 min	
Dioxane	50%	30 min	
Ethylenediamine	1 M (aq)	30 min	
Ethanol	100%	30 min	
Methanol	100%	30 min	
3-Methylaminopropylamine	1 M (aq)	30 min	
Tetrahydrofuran (THF)	100%	not suitable (dissolves the FCC)	

Appendix G The Surface Prep unit G.7 Chemical resistance

Appendix H Supported MALDI targets

This appendix gives details of the various MALDI targets supported in the MSrecovery function in Biacore 3000, and covers placing and orientation of the targets in the MALDI holder and identification of the deposition wells on the targets.

Currently supported targets with their identification in the **Analyte Recovery** wizard and **RACK** command in MDL are listed below. Refer to the sections listed for exact specifications of the target.

Target	MDL identification	Section
Bruker MTP 384 well MALDI target	MALDI	H.1
ABI Voyager sample plate, 100 well	MALDI_VOY	H.2
ABI 4700 sample plate, 100 well	MALDI_4700	H.2
ABI Voyager sample plate, 192 well	MALDI_V192	Н.3
ABI 4700 sample plate, 192 well	MALDI_192	Н.3
Shimadzu Kratos 384 well MALDI target	MALDI	H.4
Micromass 96 well, 24 ref well MALDI target	MALDI_MM	H.5

The MALDI holder is placed in the left-hand rack position in the autosampler, with the label text towards the front of the instrument.

Deposition wells are identified in the MDL recover command and in the **Rack** *editor* window for wizard-based runs. The identification systems follow the conventions of the respective MALDI target manufacturers as closely as possible.

H.1 Bruker MTP 384 well

H.1.1 Placing and orientation

The Bruker MTP 384 well target fits over the top of the MALDI holder, with well A1 at the front left corner.

H.1.2 Well identification

Wells are identified in MDL commands and the *Rack Editor* dialog box with the coordinate system A1-P24 as engraved on the target, prefixed with the rack identification R1. Examples are illustrated below.

H.2 ABI Voyager and 4700, 100 well

H.2.1 Placing and orientation

The ABI Voyager and 4700 100 well sample plates are placed in the recessed area of the MALDI holder, in the front left corner with the edges of the plate against the walls of the recessed area. Well number 91 is at the front left corner of the plate.

Make sure that the plate is correctly positioned in the holder after the holder has been placed in the autosampler.

Sample plates for both ABI Voyager and ABI 4700 Proteomics Analyzer are placed in the same way. The plates differ however in height in the MALDI holder: make sure you choose the correct plate in the **Analyte Recovery** wizard or **RACK** MDL command.

R1V48

H.2.2 Well identification

Wells are identified in MDL commands and the *Rack Editor* dialog box with the numbering system 01-99 and 00 ("00" represents well number 100) as engraved on the plate, prefixed with the letter V and the rack identification R1. Examples are illustrated below.

H.3 ABI Voyager and 4700, 192 well

H.3.1 Placing and orientation

The ABI Voyager and 4700 192 well sample plates are placed in the recessed area of the MALDI holder, in the front left corner with the edges of the plate against the walls of the recessed area. Well number A1 is at the back left corner of the plate.

Make sure that the plate is correctly positioned in the holder after the holder has been placed in the autosampler.

Sample plates for both ABI Voyager and ABI 4700 Proteomics Analyzer are placed in the same way. The plates differ however in height in the MALDI holder: make sure you choose the correct plate in the **Analyte Recovery** wizard or **RACK** MDL command.

H.3.2 Well identification

Wells are identified in MDL commands and the *Rack Editor* dialog box with the numbering system A1-H24 prefixed with the rack identification R1. Markers for rows A-H and columns 1-12 are engraved on the plate. The unmarked rows are assigned column numbers 13-24 with the letter of the row immediately above (thus the second row from the top holds positions A13-A24). Examples are illustrated below.

H.4 Shimadzu Kratos 384 well

H.4.1 Placing and orientation

The Shimadzu Kratos 384 well target fits over the top of the MALDI holder, with well A1 at the front left corner.

Note: Shimadzu Kratos offers several 384-well MALDI targets, with different well diameters and plate thicknesses. Only the Axima 384 10 mm thick plate is supported. Use of plates with other thicknesses may result in lack of sample deposition (the autosampler needle must be sufficiently close to the target for deposition to occur correctly) or damage the autosampler needle.

H.4.2 Well identification

Wells are identified in MDL commands and the *Rack Editor* dialog box with the coordinate system A1-P24 as engraved on the target, prefixed with the rack identification R1. Examples are illustrated below.

H.5 Micromass 96 well, 24 ref well

H.5.1 Placing and orientation

The Micromass 96 well, 24 ref well target is placed in the recessed area of the MALDI holder, in the front left corner with the edges of the target against the walls of the recessed area. Well number A1 is at the back left corner of the target.

Note: There are several Micromass targets available with the same layout as the standard 96+24 target. GE Healthcare guarantees correct positioning only for the standard target.

Make sure that the target is correctly positioned in the holder after the holder has been placed in the autosampler.

H.5.2 Well identification

Wells are identified in MDL commands and the *Rack Editor* dialog box with the coordinate system A1-H18 prefixed with the rack identification R1. Rows A-H and columns 1-12 are engraved on the target. Columns 13-18 refer to the lock mass reference positions, with the letter of the row immediately above (thus the first row of lock mass positions from the top holds positions A13-A18.) Examples are illustrated below.

Index

A

active sensorgram 158 ADD REPORT POINT menu command 68, 169 adding commands to the queue 55 adding report points 68 ADJUST METHOD menu command 171 ADJUST SCALE menu command 66, 158. 174 adsorption to IFC channels 132, 219 aim for immobilized level 83 results 85 air bubbles at low flow rates 216 causing baseline shifts 146 causing drift 145 causing spikes 145 in the flow cell 145 minimizing problems 149 air circulation 151 air segments 14, 19 in different injection commands 47 in liquid handling 149 ALERT block 237, 246 ALERT method command 269 door lock 246 analyte 9 size range 9 analvte recoverv in the surface prep unit 319 analyte recovery wizard 72, 95 performing in the IFC 97 performing in the surface prep unit 98 presentation of results 100 rack positions 99 apparent kinetic constants 111 APPEND method command 248, 269 application guidelines 209 problems 147 types 210 application wizard menu 75 application wizard templates 74 using 73 application wizards 39, 71 analyte recovery 95 binding analysis 102 immobilization in surface prep

unit 86 immobilization pH scouting 79 in result files 73 notebook 75 on-line help 77 rack editor 75 regeneration scouting 90 sample positions 75 starting 72 surface performance test 93 surface preparation 78 APROG block 237, 238 automatic initiation and termination sequences 239 APROG keywords 180 APROG method command 270 automatic data reduction 193 finishing routines 206 preparation routines 206 scalina 173 automatic command queue 53 Automatic Save 196 automatic save 52, 165 manual sensorgrams 42 autosampler 15 diluting samples 41 irreproducible air segments 149 malfunction 148 mixing samples 40 positioning needle 150 pump 14 rack base settings 189 rack positions 46, 258 racks 36 replacina needle 141 temperature control 150 transferring samples 40 average response 176

В

bacterial contamination 133 baseline 67, 159 for report points 68, 169 in sensorgrams 175 shifts 146 BASELINE menu command 67, 175 baseline stability 111 BEEP method command 246 BIACORE 3000

system description 13 Biacore 3000 GxP package 9 BIACORE 3000 Control Software see control software BIAevaluation 25, 70 BIAmaintenance kit 131 BIGINJECT 45, 182, 253 BIGINJECT method command 271 binding analysis 102 binding partners 9 binding rates 25 biohazards 131 blank subtraction 43 blank surfaces 83 blocks in method definitions 237 BLR files 51 buffer recommendations 225 bulk effects 209 BYPASSWASH method command 272

с

cancelling alert and message displays 247 CAPTION method command 241, 273 carry-over 218 between analysis cycles 219 between buffer and vials 218 between flow cells 218 between injections 218 changing flow path 250 changing the flow cell carrier 321 checking the temperature during a run 152 chemical resistance 223, 224, 323 cleaning Surface Prep unit 320 clearing IFC channels 141 CLOCK method command 247, 273 CLOSE menu command 164 CLOSE working tool 135 closing a menu 158 a window 164 control software 64, 168 closing down 248 long-term 64 overnight 63 short-term 63 closing the command queue 57 COINJECT 45, 182, 252 coinject 16 COINJECT method command 274 collecting data 42

COMMAND menu DEFINE RACK BASE 189 DILUTE 185 **DOCK 188** FLOW 186 INJECT 181 MIX 184 SET TEMPERATURE 187 STOP FLOW 187 STOP INJECT 184 TRANSFER 184 UNDOCK 188 WASH 186 command queue adding commands 55 closing the gueue 57 command status 54 deleting commands 56 editing commands 56 generating methods 58 inserting commands 56 method commands 55 starting the gueue 53 stopping the queue 57 window 54 command queue window menu 59 commands not available 158 commenting out method commands 237 comments in method definitions 236 communication with the instrument 152 computer port connections 28 concentration measurement 10, 25 conformance with safety standards 11 conformational changes 210 connections mains 28 connector block 14, 16 leakage 151 replacing 141 consequential errors in method definitions 256 constants in method commands 236 contact time 46 contamination with biohazards 131 continuous flow pump 14 control experiments for kinetic analysis 107 control software 24 closing 64, 168 installation 28 multiple instances 152, 155, 169 screen regions 32, 157

version number 197 control software problems 152 coolina fan in- and outlet 151 cooling the autosampler compartment 150 COPY GRAPH menu command 70, 169 COPY menu command 170 count-down timer 273 creating a new method 60, 163 CTEXT method command 246, 274 Ctrl-Break 52, 192 curve 65 curve classes 66 CURVE list in toolbar 158 CURVE method command 248, 275 CUT menu command 170 cutting marked text 170 cycle 65, 239 CYCLE list in toolbar 158

D

data collection rate 41 in application wizard runs 71 DATA COLLECTION RATE menu command 192 data quality 144 data reduction 193 dead volume 204 DEFINE ALERT method command 276 DEFINE APROG method command 276 DEFINE LOOP method command 277 DEFINE MESSAGE method command 277 DEFINE RACK BASE menu command 37, 189 defining racks 36, 189 delay between sensorgrams in multichannel mode 148 DELETE menu command 171 deleting commands from the queue 56 deleting report points 170 DESORB working tool 132, 135 detection principle 9 DETECTION method command 278 detection mode 43, 249 at method start 191 specifying at method start 250 detector array 22, 203 detergents 212 dialog boxes in methods 246 dialogue box icons 161

DILUTE menu command 41, 185 DILUTE method command 279 dilution calculator 75 diode detectors 203 DIPNEEDLE method command 280 direct injection 16 disinfectants 137, 228 dispersion 209, 214 displaying entire sensorgram 66, 174 displaying messages 246 DOCK menu command 35, 188 docking problems 151 docking the sensor chip 21, 35, 188 in the Surface Prep unit 317 door lock 14, 29, 39, 60 in methods 246 dynamic range kinetic constants 199

Е

FDIT menu ADD REPORT POINT 169 ADJUST METHOD 171 COPY 170 COPY GRAPH 169 CUT 170 DELETE 171 FIND 172 PASTE 170 **REPLACE 173** SELECT ALL 173 UNDO 170 editing commands in the queue 56 editing notebook entries 178 editing report points 68 emergency stop 52, 192 emptying flow cells 188 END keyword 237 END LOOPmethod command 286 END method command 280 ENDLOOP method command 280 enzymatic processes 10 epitope mapping 10 error handling in method editor 255 ERROR indicator 147 error messages 260 evaluating sensorgram data 25, 194 system check 140 EVALUATION menu command 70, 194 event log 69 display 180 extended version 69 markers 69

messages 230 window 32, 159 event markers 159, 178 executing APROGs 238 EXIT menu command 168 EXPORT menu command 165 exporting data 52, 165 exporting notebook contents 166 extended event log 69, 144 EXTENDED EVENT LOG menu command 159, 179 EXTRA CLEANUP 183 EXTRA CLEANUP 183 EXTRA CLEANUP in sample injections 47 EXTRACLEAN method command 254, 280

F

fields in notebook 178 file associations in Windows Explorer 155 FILE menu CLOSE 164 EXIT 168 EXPORT 165 New Application Wizard 163 NEW METHOD 163 New Method 161 OPEN 161, 164 PRINT 166 Properties 167 SAVE 164 SAVE AS 165 filling the pumps 44, 252 FIND menu command 172 finding regeneration conditions 90 FIT TO PAGE 167 flow cell carrier 321 type 1 314 type 2 314 flow cells 19 colours in sensorgram 159 dead volume 204 dimensions 204 FLOW menu command 44, 186 FLOW method command 239, 281 flow path 43, 187 at method start 191 in variable contact time injections 253 selecting 187 flow rate 44, 186 effect on sample dispersion 214 recommendations 214 FLOWCELL command

for variable contact time injections 254 FLOWCELL menu command 187 FLOWPATH method command 250, 282 FLUSH method command 283 FLUSH working tool 136, 138 fuses 203

G

generating methods from the command queue 58 GO method command 247, 283 gradient surfaces 211, 213

н

hardware error 147 hazards 10 HBS buffer 34 HELP menu 197 high sensitivity 209

I

icons in dialogue boxes 161 identifier for report points 68 identifying events in a sensorgram 160 IFC 16 stand-by valve positions 151 valve malfunction 151 IFC valves 206 immobilization in the Surface Prep unit 317 immobilization pH scouting 79 immobilizing ligand 21 implict flow path setting 253 incorrect autosampler rack positions 258 number of variables 259 parameter ordering 258 parameter values 258 variable names 257 initiating liquid delivery system 36 INJECT 45, 182, 252 INJECT menu command 45, 181 injecting sample see sample injection injection modes 16 injection of air 149 injection port leakage 151 **INJECTION PORT service tool** 141 injection techniques 216 in-line reference 212, 217 in-line reference cells 82 inserting a sensor chip 21

inserting commands in the queue 56 installation 27 installing control software 28 instrument offline 31, 155 instrument problems 147 integrated µ-fluidic cartridge see IFC invalid rack positions 150 ionic strength differences 212

κ

KEYWORD method command 242, 284 keywords in method definitions 235 in report point tables 242 KEYWORDS menu command 179 kinetic analysis 9, 25 kinetic analysis wizard 105 baseline stability 111 control experiments 107 results 110 kinetic constants 111 KINJECT 45, 182, 252 KINJECT method command 285

L

larae volume injections 16 layout method definition 235 leakage at the connector block 151 leaving the instrument overnight 63 LED indicators 23, 203 LIFETIME method command 285 liaand 9 immobilization 21 light source 22 linear flow rate 206 linked reactions control experiment 112 liquid delivery system startup 29 loading the sample loop 49 lock 14, 29, 39, 60 in methods 246 logarithmic scale 66, 174 LOOP block 237, 243 LOOP command nested loops 245 loop constructions 243 loop injection 16 LOOP method command 244, 286 loop order 244 LOST DATA FOUND 156 low data quality 144 causes 144

marking on sensorgram 144 LPARAM method command 244 LTEXT method command 246, 287

М

MAIN block 237, 238 mains connection 28 mains fuses 203 mains power switch 28 maintenance reaular 131 safety requirements 131 maintenance kit 131 MALDI 10 MAI DI holder rack position 15, 36, 99, 193 MALDI taraet 72, 98 manual control 211 manual control interface 39 MANUAL INJECT 46, 49, 182 manual mode 50 stopping the injection 50 volume mode 50 manual injection 16 manual scaling 174 manual sensoraam stop sensorgram 52 manual sensorgram 42 preparation 42 save results 51 markers report points and event log 69 MARKERS menu command 178 mass transfer control experiments 112 mass transport 209 matrix effects 145, 209 measurement frequency 22 memory effects 147 menu bar 32, 158 menu commands TARGETWASH 254, 305 MESSAGE 288 MESSAGE block 237, 246 MESSAGE method command 288 method adjustment 171 associated with run 177 file format 235 operation 60 programming 235 scale 66, 174 status between cycles 62 structure 238 time base 171

using user tools 255 method blocks 237 method commands ALERT 246, 269 APPEND 248, 269 APROG 270 BEEP 246 **BIGINJECT 271** BYPASSWASH 272 CAPTION 241, 273 CLOCK 247, 273 COINJECT 274 commenting out 237 constants 236 CTEXT 246, 274 CURVE 248, 275 **DEFINE ALERT 276** DEFINE APROG 276 DEFINE LOOP 277 DEFINE MESSAGE 277 DETECTION 278 DILUTE 279 **DIPNEEDLE 280** END 280 END LOOP 286 ENDLOOP 280 EXTRACLEAN 254, 280 FLOW 239, 281 FLOWPATH 250, 282 FLUSH 283 GO 247, 283 in command queue 55 KEYWORD 242, 284 KINJECT 285 LIFETIME 285 LOOP 244, 286 LPARAM 244 LTEXT 246, 287 MICRORECOVER 289 MICROTRANSFER 254, 290 MS INJECT 253, 254 MS RECOVER 254 MS WASH 254, 295 MSP_INJECT 253, 254, 293, 296 MSP PRIME 254, 297 MSP RECOVER 254, 294 options 235, 265 PARAM 240, 300 parameters 235 PRIME 300 OUICKINJECT 301 RACK 301 RINSE 302 RPOINT 242, 303

RTEXT 246, 304 SCALE 304 STOP 247, 305 TEMP 306 TIMES 244, 307 TITLE 308 TRANSFER 309 UNCLOG 309 variables 236 **WAIT 310** WASH 311 method control 211 method definition comments 236 common errors 255 consequential errors 256 dialog boxes 246 syntax 235 text boxes 246 text layout 235 method definition language 235 method editor checking method syntax 193 creating a new method 163 error handling 255 text layout 171 using during a run 161 window 161 METHOD menu command 177 method trace 62, 176 microbial growth 133 MICRORECOVER method command 289 microtitre plates 15 MICROTRANSFER method command 254, 290 minimizing air bubble problems 149 minimizing sample dispersion 18 MIX 291 MIX menu command 40, 184 MIX method command 291 **MODE 292** MODE method command 292 moving the instrument 27 moving the reference line 175 MS INJECT 253 MS INJECT method command 254 MS_RECOVER method command 254 MS WASH method command 254, 295 MSP INJECT 253 MSP_INJECT method command 254, 293. 296 MSP PRIME method command 254, 297 MSP RECOVER method command 254,

294 multichannel applications 213 multichannel mode 18 delay between sensorgrams 43, 148 multiple binding 10 multiple instances of control software 152, 155 multiple ligands 213 multiple sensorgram windows 64

Ν

naming variables 236 needle 15 replacing and positioning 141 needle positioning 150 NEEDLE REPLACEMENT/POSITIONING service tool 141 nested loops 245 NEW METHOD menu command 163 NEW WINDOW menu command 65 noise in sensorgrams 143 non-reproducible results 146 after DESORB 132 NORMALIZE 299 NORMALIZE method command 299 NORMALIZE working tool 136 normalizing optical system 37 normalizing in a method 136 Notebook set template 196 notebook application wizards 75 fields 178 load template option 178 NOTEBOOK menu command 178 nucleic acids 10

0

on-line help 77 OPEN menu command 164 opening a saved sensorgram 164 opening the method editor 161 optical system 22 optimizing ligand immobilization 213 options 235 in method commands 265 opto-interface 22 ORDER loop order 244 OVERLAY menu command 65, 176

Ρ

PARAM method command 240, 300

parameter ordering 258 parameters in method commands 235 PASTE menu command 170 permitted commands in DEFINE ALERT 265 in DEFINE APROG 266 in DEFINE LOOP 267 in DEFINE MESSAGE 267 in MAIN 268 pH differences 212 plot curve classes 66 POSITION fields in dialogue boxes 46 positioning the autosampler needle 141 powerup 29 PREDIP NEEDLE 40, 183 in sample injections 47 PREFERENCES menu command 196 preparing blank surfaces 83 preparing gradient surfaces 213 preparing sample injection 47 preparing solutions 34 prerun 61, 255 error messages 260 PRERUN METHOD menu command 193 PRIME method command 300 PRIME working tool 137 priming the system 36 PRINT menu command 166 printina header and footer 167 in draft mode 167 sensoraram print size 167 printing application wizard templates 75 printing autosampler rack positions 75 printing data 166 printing sensorgrams 70 processing unit 13 programming methods 235 pump refill sensorgram disturbances 145 pump tubing 204 pumps 14 air in syringe 149 malfunction 148 refill 44 replacing syringe tip 141

Q

QUICKINJECT 45, 182, 252 QUICKINJECT method command 301

R

rack base 15 defining 37, 189 RACK method command 301 rack positions 150 rack types 36, 37 RANDOM loop order 244 random variations 147 rate measurement 210 reading relative response 67 reagents that generate gas 150 recommended solutions 223 recovering lost data 156 recovery cup 19 reducing carry-over 218 reference cell 212, 217 correcting for drift 145 correcting for reproducible disturbances 145 reference line 66, 159, 174 identifying events 160 report point and event log markers 69 used in adding report points 175 REFERENCE LINE menu command 66. 174 reference subtraction 43 reference time 242 refilling the pumps 186, 252 refractive index of bulk solution 209 regeneration 221 regeneration scouting 90 regeneration solutions 227 regression coefficient 180 regular maintenance 131 relative response 67, 160, 176, 180, 210 reminder for SANITIZE and DESORB 133, 156 removing error messages 255 repeating loops 244 repetitive analyses 243 REPLACE menu command 173 replacing autosampler needle 141 connector block 141 injection port 141 pump syringe tip 141 report point baseline 169 calculated values 180 identifier 169, 180 table 159, 242 window 169, 179

report point markers 159, 178 report point table 32, 68 adding report points 169 adding report points interactively 175 deleting report points 170 exporting 165 keywords 179 report points baseline 68 editing 68 ID 68 in methods 68 markers 69 on status curves 248 window 68 reproducible disturbances 145 reserved words 236 restoring zoomed display 174 result files 164 reusing a sensor chip 22 RINSE method command 302 RINSE working tool 137, 138 **RPOINT instruction** 68 RPOINT method command 242, 303 RTEXT method command 246, 304 RUN menu DATA COLLECTION RATE 192 PRERUN METHOD 193 RUN METHOD 191 **RUN SENSORGRAM 190** STOP METHOD 192 STOP SENSORGRAM 190 RUN METHOD menu command 61, 191 RUN SENSORGRAM menu command 42, 190 running a method 61 running buffer 34

S

safety information 10 safety requirements for maintenance 131 salt residues 132 sample consumption 214 sample contact time 46 sample depletion 215 during ligand immobilization 213 sample dispersion 18, 147, 209, 214 sample injection 45, 181 air bubbles 149 air segments 19, 47 coinject 16

EXTRA CLEANUP 47 finishing times 47 large volumes 16 manual injection 16 no response 146 PREDIP NEEDLE 47 preparation 47 sample injection modes 16 sample loop 16 sample positions 75 sample preparation 212 SANITIZE 133 SANITIZE working tool 137 save file changes not saved 152 SAVE AS menu command 165 SAVE menu command 164 saving a sensorgram 42, 51 results of system check 140 savina results 164 SCALE menu command 66, 158, 173 SCALE method command 304 scalina sensoraram display 173 scaling the display 66 scheduler for SANITIZE and DESORB 133, 156 SELECT ALL menu command 173 selecting a menu 158 selecting menu commands 158 sensor chip 21 docking 21, 35, 188 docking a dummy chip in surface prep unit runs 86, 95 inserting 21 normalizing the signal 136 problems 151 reusing 22 undocking 53, 188 sensor chip cassette 21 sensoraram active curve 158 baseline 175 baseline shifts 146 caption 241 colours 159 COPY GRAPH 169 copy graph 70 data reduction 193 exporting 165 file size 192 no response on injection 146 print size 167 printing 70, 166

problems 143 random variations 147 reproducible disturbances 145 right hand axis 248 saving 51, 164 scaling 66, 158, 173 spikes 145 starting in manual control 190 stopping 190 systematic variations 146 window 64 zoom 66. 159 sensorgram window 32, 158 serial port designations 28 SERVICE TOOLS menu command 195 service tools see tools SET TEMPERATURE menu command 38, 187 setting flow rate 44, 186 shortcut keys 33, 161, 162 SHUTDOWN working tool 137 shutting down 64, 135 signal noise 143 single channel mode 18 siting the instrument 27 SKIP INJECT menu command 48 slope 180 software installation 28 SOFTWARE PROBLEM REPORT 153 spikes causes 145 display 145 not shown on printout 167 SPR 9 SPR signal normalization 37 standard deviation 180 standards conformance with 11 Standby buffer requirement 63 Standby tool 132, 194 reset while running 134 standby tool 134 starting a manual sesnorgram 190 starting a method 191 starting application wizards 72 statistical parameters 180 status items in status curves 248, 275 STATUS menu command 180 status window 32, 160 display 180 messages 229

STEP loop order 244 STOP FLOW menu command 44, 187 STOP IN JECT in MANUAL INJECT 50 STOP INJECT command with coinject 48 STOP INJECT menu command 48, 184 STOP method command 247, 305 STOP METHOD menu command 63, 192 STOP SENSORGRAM menu command 52, 190 stopping a method 63 a run 192 a sensorgram 52, 190 a sesnsoraram 57 the command queue 57 subtracting reference response 43 Superclean service tool 132, 141 surface concentration 9 surface performance test 93 results 93 surface plasmon resonance 9 Surface Prep unit 20, 313 changing configuration 320, 322 cleanina 320 configuration SP 1 315 configuration SP_2 315 configuration warning 314 configurations 20 docking the sensor chip 317 flow cell configuration 86, 95 Immobilization of ligand in 86 performing analyte recovery 319 rack position 15, 36, 99, 193 surface prep wash tool 138 surface prep wash working tool 320 surface preparation wizard 78 in-line reference cells 82 Surfactant P20 35 syntax description 265 errors 256 prerun method 193 syntax errors error messages 260 syringe tip replacing 141 SYRINGE TIP service tool 141 SYSTEM CHECK EVALUATION working tool 140 SYSTEM CHECK test tool 140 system control 24

system keywords 179 system performance 199 systematic variations 146

Т

TARGETWASH menu command 254, 305 TEMP method command 306 temperature setting 187 temperature changes 219 effect on response level 152 temperature control 23, 38 autosampler 15 autosampler racks 205 detection temperature 151, 204 in autosampler compartment 150 warning 160 temperature stability 23 Test Tools menu Signal quality check 139 TEST TOOLS menu command 195 test tools see tools text boxes in methods 246 thermo-racks 15, 205 time base for methods 171 time resolution 22 time specifications in methods 171 time-controlled injections 217 timed events 241 negative time specification 242 reference time 242 TIMES method command 244, 307 TITLE method command 308 toolbar 32, 158 toolbar buttons 33, 161, 162 tools CLOSE 135 DESORB 132, 135 FLUSH 136. 138 **INJECTION PORT 141** NEEDLE **REPLACEMENT/POSITIONING 141** NORMALIZE 136 PRIME 137 RINSE 137, 138 SANITIZE 133, 137 service tools 140 SHUTDOWN 137 standby 132, 134, 194 Superclean 141 superclean 132 surface prep wash 138

SYRINGE TIP 141 SYSTEM CHECK 140 SYSTEM CHECK EVALUATION 140 test tools 139 UNCLOGGING 141 user service 195 working tools 135 TOOLS menu EVALUATION 70, 194 **PREFERENCES** 196 SERVICE TOOLS 195 TEST TOOLS 195 WORKING TOOLS 194 tracing method operation 62 TRANSFER menu command 40, 184 TRANSFER method command 309 troubleshooting 143

υ

UNCLOG method command 309 UNCLOGGING service tool 141 UNDO menu command 170 UNDOCK menu command 53, 188 undocking problems 151 undocking a sensor chip 53, 188 unlocking the door in a method 246 unstable temperature 152 UNZOOM menu command 159, 174 user service tools 195 user tools 133 user tools in methods 255 using the method editor during a run 161

۷

variable contact times 46, 182, 213, 253 implementation 46 variable names 236 error 258 variables assigning values 240 in captions 241 in KEYWORD commands 243 in method commands 236 in RPOINT commands 243 local status 240 using in APROG call 240 vial dislodger 15 VIEW menu ADJUST SCALE 66, 158, 174 **BASELINE 175** EXTENDED EVENT LOG 159, 179 KEYWORDS 179 MARKERS 178 METHOD 177 METHOD TRACE 62 NEW WINDOW 65 NOTEBOOK 178 OVERLAY 65, 176 PLOT CURVE CLASSES 66 REFERENCE LINE 174 SCALE 66, 158, 173 STATUS 180 UNZOOM 159, 174

w

WAIT method command 310 wash automatic routines 206 autosampler needle 51 general recommendations 51 IFC channels 51 method command options 221 needle 51 WASH menu command 51, 186 WASH method command 311 weekly maintenance 133 wetted materials 323 white space characters 236 window for report points 68 Windows clipboard 170 Explorer 155 system resources 156 Windows techniques 31 working tools 194 surface prep wash 320 WORKING TOOLS menu command 194 working tools see tools

z

zoom 159 zoom sensorgram 66, 159

For contact information for your local office, please visit www.gelifesciences.com/contact

GE Healthcare Bio-Sciences AB Björkgatan 30 751 84 Uppsala Sweden

www.biacore.com

GE, imagination at work and GE monogram are trademarks of General Electric Company.

Biacore is a trademark of GE Healthcare companies.

All third party trademarks are the property of their respective owners.

© 2007-2008 General Electric Company—All rights reserved. First published May 2007

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information.

GE Healthcare UK Ltd Amersham Place, Little Chalfont, Buckinghamshire, HP7 9NA, UK

GE Healthcare Bio-Sciences Corp 800 Centennial Avenue, P.O. Box 1327, Piscataway, NJ 08855-1327, USA

GE Healthcare Europe GmbH Munzinger Strasse 5, D-79111 Freiburg, Germany

GE Healthcare Bio-Sciences KK Sanken Bldg. 3-25-1, Hyakunincho, Shinjuku-ku, Tokyo 169-0073, Japan