

## phosphoELISA™ Kit Catalog # KHO0251 (96 tests)

# Human c-Met (Total)

www.invitrogen.com

Invitrogen Corporation 542 Flynn Road, Camarillo, CA 93012 Tel: 800-955-6288

E-mail: techsupport@invitrogen.com

#### **Table of Contents**

| Table of Contents                                      | 3  |
|--------------------------------------------------------|----|
| Contents and Storage                                   | 4  |
| Introduction                                           | 5  |
| Purpose                                                | 5  |
| Principle of the Method                                | 5  |
| Background Information                                 | 5  |
| Methods                                                | 7  |
| Materials Needed But Not Provided                      | 7  |
| Procedural Notes                                       | 7  |
| Procedure For Protein Extraction From Cells Or Tissues | 8  |
| Preparation of Reagents                                | 9  |
| Assay Procedure                                        | 10 |
| Typical Data                                           | 11 |
| Performance Characteristics                            | 12 |
| Sensitivity                                            | 12 |
| Precision                                              | 12 |
| Recovery                                               | 13 |
| Specificity                                            | 13 |
| Linearity of Dilution                                  | 14 |
| Parallelism                                            | 14 |
| Limitations of the Procedure                           | 14 |
| Appendix                                               | 15 |
| Troubleshooting Guide                                  | 15 |
| Technical Support                                      | 16 |
| References                                             | 17 |

#### **Contents and Storage**

#### **Storage**

Store at 2 to 8°C.

#### **Contents**

| Reagents Provided                                                                                                               | 96<br>Test Kit |  |
|---------------------------------------------------------------------------------------------------------------------------------|----------------|--|
| Hu c-Met (Total) Standard, lyophilized. Contains 0.1% sodium azide. Refer to vial label for quantity and reconstitution volume. |                |  |
| Standard Diluent Buffer*. Contains 0.1% sodium azide; 25 mL per bottle.                                                         | 1 bottle       |  |
| Antibody Coated Wells. 12 x 8 Well Strips.                                                                                      | 1 plate        |  |
| Hu c-Met (Total) Detection Antibody. Contains 0.1% sodium azide; 11 mL per bottle.                                              | 1 bottle       |  |
| Anti-Rabbit IgG HRP (100X). Contains 3.3 mM thymol; 0.125 mL per vial.                                                          |                |  |
| HRP Diluent. Contains 3.3 mM thymol; 25 mL per bottle.                                                                          |                |  |
| Wash Buffer Concentrate (25X). 100 mL per bottle.                                                                               | 1 bottle       |  |
| Stabilized Chromogen, Tetramethylbenzidine (TMB). 25 mL per bottle.                                                             |                |  |
| Stop Solution. 25 mL per bottle.                                                                                                |                |  |
| Plate Covers, adhesive strips.                                                                                                  | 3              |  |
| * If precipitates are found in Standard Diluent Buffer, they should be completely dis                                           | solved by      |  |

<sup>\*</sup> If precipitates are found in *Standard Diluent Buffer*, they should be completely dissolved by warming to room temperature before use.

#### Disposal Note

This kit contains materials with small quantities of sodium azide. Sodium azide reacts with lead and copper plumbing to form explosive metal azides. Upon disposal, flush drains with a large volume of water to prevent azide accumulation. Avoid ingestion and contact with eyes, skin and mucous membranes. In case of contact, rinse affected area with plenty of water. Observe all federal, state and local regulations for disposal.

#### Safety

All blood components and biological materials should be handled as potentially hazardous. Follow universal precautions as established by the Centers for Disease Control and Prevention and by the Occupational Safety and Health Administration when handling and disposing of infectious agents.

#### Introduction

#### **Purpose**

The Invitrogen c-Met (Total) Human ELISA Kit is designed to detect and quantify the level of c-Met protein independent of its phosphorylation state. This assay is intended for the detection of c-Met in lysates of human cells. Reactivity of this ELISA kit with other species is not assured. This ELISA kit detects full length c-Met protein but not soluble c-Met. This kit can be used to normalize the phosphorylated c-Met content of the samples when using the c-Met [pYpYpY1230/1234/1235] Invitrogen ELISA kit (Cat. # KHO0281).

For Research Use Only. CAUTION: Not for human or animal therapeutic or diagnostic use.

## Principle of the Method

The Invitrogen c-Met (Total) kit is a solid phase sandwich Enzyme Linked-Immuno-Sorbent Assay (ELISA). A monoclonal antibody specific for c-Met (regardless of phosphorylation state) has been coated onto the wells of the microtiter strips provided. Samples, including a standard containing c-Met, control specimens, and unknowns, are pipetted into these wells. During the first incubation, the c-Met antigen binds to the immobilized (capture) antibody. After washing, a rabbit antibody specific for c-Met (regardless of phosphorylation state) is added to the wells. During the second incubation, this antibody serves as a detection antibody by binding to the immobilized c-Met protein captured during the first incubation. After removal of excess detection antibody, a horseradish peroxidase-labeled Anti-Rabbit IgG (Anti-Rabbit IgG HRP) is added. This binds to the detection antibody to complete the four-member sandwich. After a third incubation and washing to remove all the excess Anti-Rabbit IgG HRP, a substrate solution is added, which is acted upon by the bound enzyme to produce color. The intensity of this colored product is directly proportional to the concentration of c-Met present in the original specimen.

## Background Information

c-Met, a member of the tyrosine kinase superfamily, is the receptor for hepatocyte growth factor, also known as scatter factor (HGF/SF). The mature c-Met protein is a disulfide-linked heterodimer with  $M_r$ =190 kDa composed of a heavily glycosylated  $\alpha$  subunit that is completely extracellular in localization, and a  $\beta$  subunit comprised of an extracellular ligand binding domain, a single transmembrane domain, and a cytoplasmic tyrosine kinase domain. c-Met is transcribed from a single open reading frame and translated into a protein precursor that is proteolytically cleaved, yielding the heterodimeric mature protein. Alternative splicing yields several c-Met isoforms, including proteins that remain in the uncleaved, monomeric state or that lack various portions of the c-Met cytoplasmic domain. Cells expressing c-Met include epithelial cells, endothelial cells, blood cells of various types, and glomerular mesenchymal cells.

The ligand for c-Met, HGF/SF, is a member of the plasminogen-related growth factor family, which is synthesized as an inactive pro-form. HGF/SF activation requires cleavage with either urokinase plasminogen activator (uPA), HGF activator, or Coagulation Factor Xa. Sources of HGF/SF include mesenchymal cells, mesanglial cells, endothelial cells, macrophages, and tumor cells.

HGF/SF binding to c-Met stimulates receptor dimerization and the phosphorylation of numerous residues within the receptor's cytoplasmic domain, including tyrosines 1230, 1234, and 1235 within the Tyr-X-X-X Tyr-Tyr motif of c-Met's activation loop. This motif is conserved among the activation loops of several receptor tyrosine kinases including insulin receptor, insulin-like growth

factor-1 receptor, nerve growth factor receptor/Trks, and RON. Phosphorylation of tyrosines 1234 and 1235 of c-Met is required for activation of the receptor's tyrosine kinase activity. c-Met phosphorylation also generates docking sites for numerous signaling molecules and stimulates receptor internalization via clathrin-coated vesicles. Signaling proteins that are phosphorylated and/or localized in response to c-Met phosphorylation include: Grb2, Shc, Cbl, Crk, cortactin, paxillin, GAB1, PI-3K, FAK, Src, Ras, ERK1 and 2, JNK, PLC-γ, AKT, and STAT3.

HGF/SF stimulation of c-Met expressing cells enhances proliferation, migration, morphogenesis, and protease synthesis, characteristics that are associated with invasive cell phenotype.

#### Methods

#### **Materials** Needed **But Not Provided**

- Microtiter plate reader (at or near 450 nm) with software
- Calibrated adjustable precision pipettes
- Distilled or deionized water
- Plate washer: automated or manual (squirt bottle, manifold dispenser, etc.)
- Glass or plastic tubes for diluting solutions
- Absorbent paper towels
- Calibrated beakers and graduated cylinders

## **Notes**

- Procedural 1. When not in use, kit components should be refrigerated. All reagents should be warmed to room temperature before use.
  - 2. Microtiter plates should be allowed to come to room temperature before opening the foil bags. Once the desired number of strips has been removed, immediately reseal the bag and store at 2 to 8°C to maintain plate integrity.
  - 3. Samples should be collected in pyrogen/endotoxin-free tubes.
  - 4. Samples should be frozen if not analyzed shortly after collection. Avoid multiple freeze-thaw cycles of frozen samples. Thaw completely and mix well prior to analysis.
  - 5. When possible, avoid use of badly hemolyzed or lipemic sera. If large amounts of particulate matter are present, centrifuge or filter prior to analysis.
  - 6. It is recommended that all standards, controls and samples be run in duplicate.
  - 7. When pipetting reagents, maintain a consistent order of addition from well-to-well. This ensures equal incubation times for all wells.
  - 8. Do not mix or interchange different reagent lots from various kit lots.
  - 9. Do not use reagents after the kit expiration date.
  - 10. Absorbances should be read immediately, but can be read up to 2 hours after assay completion. For best results, keep plate covered in the dark.
  - 11. In-house controls should be run with every assay. If control values fall outside pre-established ranges, the accuracy of the assay is suspect.
  - 12. All residual wash liquid must be drained from the wells by efficient aspiration or by decantation followed by tapping the plate forcefully on absorbent paper. **Never** insert absorbent paper directly into the wells.
  - 13 Because Stabilized Chromogen is light sensitive, avoid prolonged exposure to light. Avoid contact between chromogen and metal, or color may develop.

#### **Directions** for Washing

- Incomplete washing will adversely affect the test outcome. All washing must be performed with the Wash Buffer Concentrate (25X) provided.
- Washing can be performed manually as follows: completely aspirate the liquid from all wells by gently lowering an aspiration tip into the bottom of each well. Take care not to scratch the inside of the well. After aspiration, fill the wells with at least 0.4 ml of diluted Wash Buffer. Let soak for 15 to 30 seconds, then aspirate the liquid. Repeat as directed under Assay Procedure. After the washing procedure, the plate is inverted and tapped dry on absorbent tissue.
- Alternatively, the diluted Wash Buffer may be put into a squirt bottle. If a squirt bottle is used, flood the plate with the diluted Wash Buffer, completely filling all wells. After the washing procedure, the plate is inverted and tapped dry on absorbent tissue.
- If using an automated washer, follow the washing instructions carefully.

#### Procedure For Extraction Of Proteins From Cells Or Tissues

#### Recommended Formulation of Cell and Tissue Extraction Buffer:

- 10 mM Tris, pH 7.4
- 100 mM NaCl
- 1 mM EDTA
- 1 mM EGTA
- 1 mM NaF
- 20 mM Na<sub>4</sub>P<sub>2</sub>O<sub>7</sub>

- 2 mM Na<sub>3</sub>VO<sub>4</sub>
- 1% Triton X-100
- 10% glycerol
- 0.1% SDS
- 0.5% deoxycholate

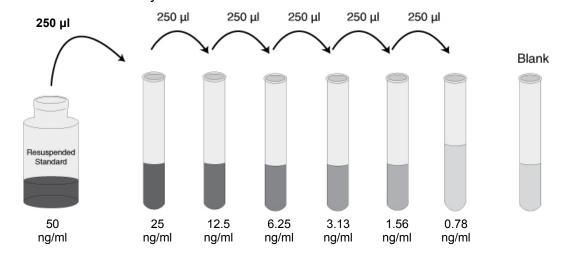
This Cell Extraction Buffer (Invitrogen, Cat. # FNN0011) needs the following reagents to be added:

- 1 mM PMSF (stock is 0.3 M in DMSO)
- Protease inhibitor cocktail (e.g., Sigma Cat. # P-2714) (reconstituted according to manufacturer's guideline). Add 500 µl per 5 ml Cell Extraction Buffer.

The Cell Extraction Buffer is stable for 2 to 3 weeks at 4°C or for up to 6 months when aliquoted (without protease inhibitors and PMSF added) and stored at -20°C. When stored frozen, the buffer should be thawed on ice. **Important:** add the protease inhibitors just before using. The stability of protease inhibitor supplemented Cell Extraction Buffer is 24 hours at 4°C. PMSF is very unstable and must be added prior to use, even if added previously.

The following protocol has been applied to several cell lines using this Cell Extraction Buffer. Researchers may optimize the cell extraction procedures that work best in their hands.

- 1. Collect cells in PBS by centrifugation (non-adherent) or scraping from culture flasks (adherent).
- Wash cells twice with cold PBS.
- 3. Remove and discard the supernatant and collect the cell pellet. (At this point the cell pellet can be frozen at -80°C and lysed at a later date).
- 4. Lyse the cell pellet in Cell Extraction Buffer for 30 minutes on ice with vortexing at 10 minute intervals. The volume of Cell Extraction Buffer depends on the cell number in cell pellet and expression of c-Met. For example, 10<sup>8</sup> HeLa cells grown in RPMI plus 10% FBS can be extracted in 1 ml of Cell Extraction Buffer. Under these conditions, use of 1-10 μl of the clarified cell lysate diluted to a volume of 100 μl/well in *Standard Diluent Buffer* (See **Assay Procedure**) is sufficient for the detection of c-Met.
- 5. Transfer lysates to microcentrifuge tubes and centrifuge at 13,000 rpm for 10 minutes at 4°C.
- Aliquot the clear lysate to clean microcentrifuge tubes. These samples are ready for assay. Lysates can be stored at -80°C. Avoid multiple freeze-thaw cycles.


#### **Preparation of Reagents**

## Dilution of Standard

**Note:** The *Hu c-Met (Total) Standard* (lyophilized cell extract from GTL-16 cells) was calibrated against the mass of highly purified, truncated, recombinant human c-Met protein expressed in a mouse myeloma cell line, N50.

- 1. Reconstitute *Hu c-Met (Total) Standard* with *Standard Diluent Buffer*. Refer to standard vial label for instructions. Swirl or mix gently and allow to sit for 10 minutes to ensure complete reconstitution. Label as 50 ng/ml c-Met. Use the standard within 1 hour of reconstitution.
- 2. Add 0.25 ml of *Standard Diluent Buffer* to each of 6 tubes 25, 12.50, 6.25, 3.13, 1.56, and 0.78 ng/ml of c-Met.
- 3. Make serial dilutions of the standard as described in the following dilution diagram. Mix thoroughly between steps.

Remaining reconstituted standard should be discarded or frozen in aliquots at -80°C for further use. Standard can be frozen and thawed one time only without loss of immunoreactivity.



## Preparing IgG HRP

**Note:** Prepare within 15 minutes of usage. The *Anti-Rabbit IgG HRP (100X)* is in 50% glycerol, which is viscous. To ensure accurate dilution, allow the *Anti-Rabbit IgG HRP (100X)* to reach room temperature. Gently mix. Pipette the *Anti-Rabbit IgG HRP (100X)* slowly. Remove excess concentrate solution from pipette tip by gently wiping with clean absorbent paper.

- 1. Dilute 10 µl of this 100X concentrated solution with 1 ml of *HRP Diluent* for each 8-well strip used in the assay. Label as Anti-Rabbit IgG HRP Working Solution.
- 2. Return the unused Anti-Rabbit IgG HRP (100X) to the refrigerator.

| # of 8-Well Strips | Volume of Anti-Rabbit IgG HRP (100X) | Volume of Diluent |  |
|--------------------|--------------------------------------|-------------------|--|
| 2                  | 20 μl solution                       | 2 ml              |  |
| 4                  | 40 μl solution                       | 4 ml              |  |
| 6                  | 60 µl solution                       | 6 ml              |  |
| 8                  | 80 μl solution                       | 8 ml              |  |
| 10                 | 100 µl solution                      | 10 ml             |  |
| 12                 | 120 µl solution                      | 12 ml             |  |

#### Dilution of Wash Buffer

- 1. Allow the Wash Buffer Concentrate (25X) to reach room temperature and mix to ensure that any precipitated salts have redissolved. Dilute 1 volume of the Wash Buffer Concentrate (25X) with 24 volumes of deionized water (e.g., 50 ml may be diluted up to 1.25 liters, 100 ml may be diluted up to 2.5 liters). Label as Working Wash Buffer.
- 2. Store both the concentrate and the Working Wash Buffer in the refrigerator. The diluted buffer should be used within 14 days.

#### Assay Procedure

#### Be sure to read the *Procedural Notes* section before carrying out the assay.

Allow all reagents to reach room temperature before use. Gently mix all liquid reagents prior to use.

**Note**: A standard curve must be run with each assay.

- 1. Determine the number of 8-well strips needed for the assay. Insert these in the frame(s) for current use. (Re-bag extra strips and frame. Store these in the refrigerator for future use.)
- 2. Add 100 µl of the *Standard Diluent Buffer* to the zero standard wells. Well(s) reserved for chromogen blank should be left empty.
- 3. Add 100 µl of standards and diluted samples or controls to the appropriate microtiter wells. Samples prepared in Cell Extraction Buffer must be diluted 1:10 or greater in *Standard Diluent Buffer* (for example, 10 µl sample into 90 µl buffer). While a 1:10 sample dilution has been found to be satisfactory, higher dilutions such as 1:25 or 1:50 may be optimal. The dilution chosen should be optimized for each experimental system. Tap gently on side of plate to mix.
- 4. Cover wells with *plate cover* and incubate for 2 hours at room temperature.
- 5. Thoroughly aspirate or decant solution from wells and discard the liquid. Wash wells 4 times. See **Directions for Washing**.
- 6. Pipette 100 μl of *Hu c-Met (Total) Detection Antibod*y solution into each well except the chromogen blank(s). Tap gently on the side of the plate to mix.
- 7. Cover plate with *plate cover* and incubate for **1 hour at room temperature**.
- 8. Thoroughly aspirate or decant solution from wells and discard the liquid. Wash wells 4 times. See **Directions for Washing**.
- Add 100 µl Anti-Rabbit IgG HRP Working Solution to each well except the chromogen blank(s). (Prepare the working dilution as described in **Preparing** IgG-HRP).
- 10. Cover wells with the *plate cover* and incubate for **30 minutes at room temperature**.
- 11. Thoroughly aspirate or decant solution from wells and discard the liquid. Wash wells 4 times. See **Directions for Washing**.
- 12. Add 100 µl of *Stabilized Chromogen* to each well. The liquid in the wells will begin to turn blue.
- 13. Incubate for 30 minutes at room temperature and in the dark. Note: Do not cover the plate with aluminum foil or metalized mylar. The incubation time for chromogen substrate is often determined by the microtiter plate reader used. Many plate readers have the capacity to record a maximum optical density (O.D.) of 2.0. The O.D. values should be monitored and the substrate reaction stopped before the O.D. of the positive wells exceeds the limits of the instrument. The O.D. values at 450 nm can only be read after the Stop Solution has been added to each well. If using a reader that records only to 2.0 O.D., stopping the assay after 20 to 25 minutes is suggested.

- 14. Add 100 µl of *Stop Solution* to each well. Tap side of plate gently to mix. The solution in the wells should change from blue to yellow.
- 15. Read the absorbance of each well at 450 nm having blanked the plate reader against a chromogen blank composed of 100 µl each of *Stabilized Chromogen* and *Stop Solution*. Read the plate within 2 hours after adding the *Stop Solution*.
- 16. Use a curve fitting software to generate the standard curve. A four parameter algorithm provides the best standard curve fit.
- 17. Read the concentrations for unknown samples and controls from the standard curve. (Samples producing signals greater than that of the highest standard should be diluted in *Standard Diluent Buffer* and reanalyzed. Multiply value(s) obtained for sample(s) by the appropriate dilution factor to correct for the dilution in step 3.

#### Typical Data (Example)

The following data were obtained for the various standards over the range of 0 to 50 ng/ml c-Met.

| Standard c-Met (Total)<br>(ng/ml) | Optical Density<br>(450 nm) |
|-----------------------------------|-----------------------------|
| , ,                               | ,                           |
| 50                                | 2.76                        |
| 25                                | 1.87                        |
| 12.5                              | 1.25                        |
| 6.25                              | 0.95                        |
| 3.13                              | 0.72                        |
| 1.57                              | 0.49                        |
| 0.78                              | 0.39                        |
| 0                                 | 0.17                        |

#### **Performance Characteristics**

#### Sensitivity

The analytical sensitivity of this assay is < 0.4 ng/ml of c-Met. This was determined by adding two standard deviations to the mean O.D. obtained when the zero standard was assayed 30 times.

The sensitivity of this ELISA was compared to Western blotting using known quantities of c-Met. The data presented below show that the sensitivity of the ELISA is approximately 2x greater than that of Western blotting. The bands shown in the Western blot data were developed using rabbit anti-c-Met [pYpYpY1230/1234/1235] and an alkaline phosphatase conjugated anti-rabbit IgG followed by chemiluminescent substrate and autoradiography.

#### **Detection of c-Met (Total) by ELISA vs Western Blot:**

| Western Blot<br>(140 kDa) |      |      |      | 83339 |       |       |       |      |
|---------------------------|------|------|------|-------|-------|-------|-------|------|
| ELISA<br>(O.D. 450 nm)    | 2.76 | 1.87 | 1.25 | 0.95  | 0.72  | 0.49  | 0.39  | 0.17 |
| c-Met<br>(ng/test)        | 5    | 2.5  | 1.25 | 0.625 | 0.313 | 0.156 | 0.078 | 0    |

#### **Precision**

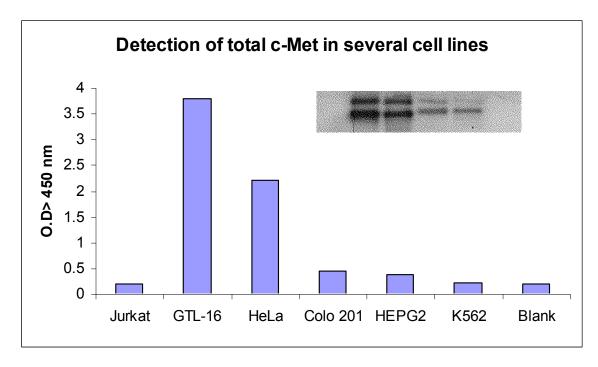
#### 1. Intra-Assay Precision

Samples of known c-Met concentration were assayed in replicates of 16 to determine precision within an assay.

|                                                       | Sample 1 | Sample 2 | Sample 3 |  |  |
|-------------------------------------------------------|----------|----------|----------|--|--|
| Mean<br>(ng/ml)                                       | 37.8     | 16.3     | 8.4      |  |  |
| SD                                                    | 3.4      | 1.4      | 0.7      |  |  |
| %CV                                                   | 9.1      | 8.4      | 8.4      |  |  |
| SD = Standard Deviation CV = Coefficient of Variation |          |          |          |  |  |

#### 2. Inter-Assay Precision

Samples were assayed 48 times in multiple assays to determine precision between assays


|                                                       | Sample 1       | Sample 2 | Sample 3 |  |  |
|-------------------------------------------------------|----------------|----------|----------|--|--|
| Mean<br>(ng/ml)                                       | 37.1           | 16.6     | 8.0      |  |  |
| SD                                                    | 3.9            | 1.8      | 0.9      |  |  |
| %CV                                                   | 10.4 10.6 11.4 |          |          |  |  |
| SD = Standard Deviation CV = Coefficient of Variation |                |          |          |  |  |

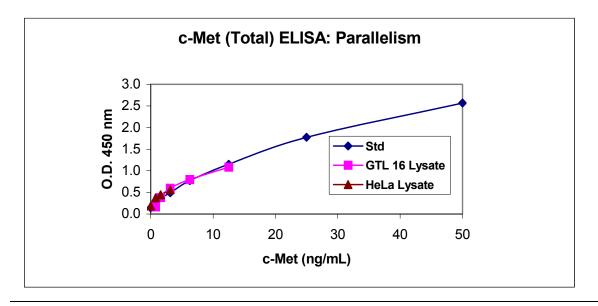
#### Recovery

To evaluate recovery, Cell Extraction Buffer was diluted 1:10 with *Standard Diluent Buffer* to bring the SDS concentration to < 0.01%. c-Met (Total) Standard was spiked into this. The average recovery was 99.9%.

#### **Specificity**

The c-Met ELISA is specific for the measurement of total c-Met. To determine the specificity of this ELISA kit, cell extracts from different cell lines, each at a concentration of 200 mg/ml total protein, were analyzed. The data presented in the figure below show that the kit detects c-Met protein in cell lysates from human Jurkat, GTL-16, HeLa, Colo 201, HEPG2, and K562 cells. The levels of c-Met protein detected with this ELISA kit are consistent with results obtained by Western blot analysis (insert).




## Linearity of Dilution

GTL-16 cells grown in tissue culture medium containing 10% fetal calf serum were treated with sodium orthovanadate at 1 mM for 16 hours and lysed with Cell Extraction Buffer. This lysate was diluted in *Standard Diluent Buffer* over the range of the assay and measured for c-Met content. Linear regression analysis of samples versus the expected concentration yielded a correlation coefficient of 0.99.

|          | Cell Lysate      |                  |               |  |
|----------|------------------|------------------|---------------|--|
| Dilution | Measured (ng/ml) | Expected (ng/ml) | %<br>Expected |  |
| Neat     | 50.0             | 50.0             | 100           |  |
| 1/2      | 29.6             | 25.0             | 118           |  |
| 1/4      | 15.8             | 12.5             | 126           |  |

#### **Parallelism**

Natural c-Met from GTL-16 and HeLa cell lysates was serially diluted in *Standard Diluent Buffer*. The optical density of each dilution was plotted against the c-Met (Total) standard curve. Parallelism was demonstrated by the figure below and indicated that the standard accurately reflects c-Met content in samples.



## Limitations of the Procedure

Do not extrapolate the standard curve beyond top standard point; the dose-response is non-linear in this region and accuracy is difficult to obtain. Dilute all samples above the highest standard point with *Standard Diluent Buffer*, reanalyze these and multiply results by the appropriate dilution factor.

The influence of various extraction buffers has not been thoroughly investigated. The rate of degradation of native c-Met in various matrices has not been investigated.

#### **Appendix**

#### **Troubleshooting Guide**

Standard curve wells develop, but sample wells produce weak or no signal.

Cause: Improper sample preparation.

Solution 1: Make sure to prepare cell extracts in the protease inhibitorsupplemented Cell Extraction Buffer recommended in the protocol booklet. Other buffer formulations have not been evaluated.

Cause: Samples contain materials that interfere with the assay.

Solution 1: The Cell Extraction Buffer recommended in the protocol booklet contains SDS. This detergent can potentially interfere with the immunoassay. For this reason, we recommend that all samples be diluted by a factor of at least 1:10 using the Standard Diluent Buffer provided in the kit. This buffer also contains blocking proteins that will reduce background signal.

Cause: The concentration of the target analyte is too dilute.

Solution 1: When preparing the cell extracts, increase the number of cells per volume of protease inhibitor supplemented Cell Extraction Buffer. Ideally, the concentration of protein in each cell extract, as determined by the Quant-iT™ protein assay kit, will be between 1 and 10 mg/ml (Method 1) or 1 and 5 mg/ml (Method 2). It is recommended that 5-10 µg of total cellular protein as a starting point be loaded into each well.

Solution 2: Optimize the stimulation procedure and time.

Cause: A sample treatment step was not performed.

Solution 1: Certain analytes (e.g., ERK1/2 [pTpY185/187] and ERK1/2 Total) require a sample treatment step to improve performance with Invitrogen phosphoELISA™ kits. Please see the analyte-specific protocol booklet for information on sample treatment procedures.

Cause: Samples deteriorated during storage.

Solution 1: Make sure that the Cell Extraction Buffer is supplemented with phosphatase inhibitors and protease inhibitors just prior to use.

Solution 2: All samples should be stored frozen at -80°C.

Solution 3: Samples should be subjected to only one freeze-thaw cycle.

Solution 4: Some proteins can be lost by adsorption when stored in containers made of polystyrene or certain kinds of glass. Polypropylene tubes are best for storing samples.

Sample wells

Cause: Improper dilution of standards.

develop, but standard

Solution 1: Check reconstitution volume of standard.

wells produce weak or no

signal.

Solution 2: Standard curves are generated by serially diluting the reconstituted standard. Check the serial dilution method.

Solution 3: Standards should be used within an hour of reconstitution and serial dilution.

Cause: Improper storage of standards.

Solution 1: Standards are provided as lyophilized powders that should be stored at 2–8°C. Once reconstituted, standard should be stored at –80°C.

Neither the standard curve wells nor the sample wells develop.

Cause: Insufficient Anti-Rabbit IgG HRP secondary antibody activity.

Solution 1: Check the dilution of the Anti-Rabbit IgG HRP (100X).

Solution 2: The Anti-Rabbit IgG HRP (100X) must be freshly diluted for each

Solution 3: The Anti-Rabbit IgG HRP (100X) must be stored at 2–8°C.

Solution 4: Sodium azide is an irreversible inhibitor of horseradish peroxidase enzyme activity. Make sure to dilute the Anti-Rabbit IgG HRP (100X) in the correct buffer. A guick test can be performed to determine if the Anti-Rabbit IgG HRP (100X) is active. Into a clean test tube, dispense 200 µl of the TMB substrate solution provided in the kit. This TMB substrate solution should be clear to slightly blue-green tinted. Next, pipette 2 µl of the Anti-Rabbit IgG HRP (100X). The color of the TMB will change to an intense agua blue instantaneously if the HRP has retained its enzyme activity.

Cause: Insufficient Detector Antibody.

Solution 1: The Detector Antibody must be stored at 2–8°C.

Solution 2: Improper dilution of Detector Antibody.

Cause: TMB solution lost activity.

Solution 1: The TMB solution should be clear before it is dispensed into the wells of the microtiter plate.

An intense agua blue color indicates that the product is contaminated. Please contact Technical Support if this problem is noted. To avoid contamination, we recommend that the quantity required for an assay be dispensed into a disposable trough for pipetting. Any TMB solution left in the trough should be discarded.

Solution 2: Avoid contact of the TMB solution with items containing metal ions.

Standard curves are not developing consistently in between different runs.

Cause: Improper dilution of Secondary antibody.

Solution 1: The Anti-Rabbit IgG HRP (100X) is in 50% glycerol. This solution is viscous. To ensure accurate dilution, allow Anti-Rabbit IgG HRP (100X) to reach room temperature. Gently mix. Pipette concentrate slowly. Remove excess concentrate solution from pipette tip by gently wiping with clean absorbent paper. Solution 2: Check plate washing technique. Results can be effected if some liquid remains after aspiration.

#### **Technical Support**

Contact Us For more troubleshooting tips, information, or assistance, please call, email, or go online to www.invitrogen.com/ELISA.



#### USA:

**Invitrogen Corporation** 542 Flynn Road Camarillo, CA 93012

Tel: 800-955-6288

E-mail: techsupport@invitrogen.com

#### **Europe:**

Invitrogen Ltd Inchinnan Business Park 3 Fountain Drive Paisley PA4 9RF, UK

Tel: +44 (0) 141 814 6100 Fax: +44 (0) 141 814 6117

E-mail: eurotech@invitrogen.com

#### References

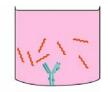
- 1. Crostella, L., et al. (2001) Hepatocyte Growth Factor/scatter factor-induces phosphorylation of cortactin in A431 cells in a Src kinase-independent manner. *Oncogene* 20(28):3735-3745.
- 2. Fan, S., et al. (2001) The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. *Mol. Cell. Biol.* 21(15):4968-4984.
- 3. Follenzi, A., et al. (2000) Cross-talk between the proto-oncogenes Met and Ron. *Oncogene* 19(27):3041-3049.
- 4. Furge, K.A., et al. (2000) Met receptor tyrosine kinase: enhanced signaling through adapter proteins. *Oncogene* 19(49):5582-5589.
- 5. Guiton, M., et al. (1994) Identification of in vivo brain-derived neurotrophic factor-stimulated autophosphorylation sites on the TrkB receptor tyrosine kinase by site-directed mutagenesis. *J. Biol. Chem.* 269(48):30370-30377.
- 6. Longati, P., et al. (2001) Receptor tyrosine kinases as therapeutic targets: the model of the MET oncogene. *Curr. Drug Targets* 2(1):41-55.
- 7. Kang, J.Y., et al. (2003) Tissue microarray analysis of hepatocyte growth factor/Met pathway components reveals a role from Met, matripase, and hepatocyte growth factor activator inhibitor 1 in the progression of node-negative breast cancer. *Cancer Res.* 63:1101-1105.
- 8. Matsumoto, K. and T. Nakamura (2001) Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. *Kidney Int.* 59(6):2023-2038.
- 9. Maulik, G., et al. (2002) Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. *Cytokine Growth Factor Rev.* 13(1):41-59.
- Park, M., et al. (1987) Sequence of MET protooncogene cDNA has features characteristic of the tyrosine kinase family of growth-factor receptors. *Proc. Nat'l. Acad. Sci.* 84:6379-6383.
- 11. Parr, C., et al. (2001) The HGF/SF-induced phosphorylation of paxillin, matrix adhesion, and invasion of prostate cancer cells were suppressed by NK4, an HGF/SF variant. *Biochem. Biophys. Res. Commun.* 285(5):1330-1337.
- 12. Wei, L., et al. (1995) Expression, characterization, and crystallization of the catalytic core of the human insulin receptor protein-tyrosine kinase domain. *J. Biol. Chem.* 270(14):8122-8130.
- 13. Zhang, X., et al. (2003) Sp1 and Sp3 transcription factors synergistically regulate HGF receptor gene expression in kidney. *Am. J. Renal Physiol.* 284:F82-F94.

## Limited Warranty

Invitrogen is committed to providing our customers with high-quality goods and services. Our goal is to ensure that every customer is 100% satisfied with our products and our service. If you should have any questions or concerns about an Invitrogen product or service, please contact our Technical Support Representatives. Invitrogen warrants that all of its products will perform according to the specifications stated on the Certificate of Analysis. The company will replace, free of charge, any product that does not meet those specifications. This warranty limits Invitrogen Corporation's liability only to the cost of the product. No warranty is granted for products beyond their listed expiration date. No warranty is applicable unless all product components are stored in accordance with instructions. Invitrogen reserves the right to select the method(s) used to analyze a product unless Invitrogen agrees to a specified method in writing prior to acceptance of the order. Invitrogen makes every effort to ensure the accuracy of its publications, but realizes that the occasional typographical or other error is inevitable. Therefore Invitrogen makes no warranty of any kind regarding the contents of any publications or documentation. If you discover an error in any of our publications, please report it to our Technical Support Representatives. Invitrogen assumes no responsibility or liability for any special, incidental, indirect or consequential loss or damage whatsoever. The above limited warranty is sole and exclusive. No other warranty is made, whether expressed or implied, including any warranty of merchantability or fitness for a particular purpose.

## Licensing Information

These products may be covered by one or more Limited Use Label Licenses (see the Invitrogen Catalog or our website, <a href="www.invitrogen.com">www.invitrogen.com</a>). By use of these products you accept the terms and conditions of all applicable Limited Use Label Licenses. Unless otherwise indicated, these products are for research use only and are not intended for human or animal diagnostic, therapeutic or commercial use.


**Explanation of symbols** 

| Symbol                 | Description Symbol Description                                                    |        |                                              |  |  |
|------------------------|-----------------------------------------------------------------------------------|--------|----------------------------------------------|--|--|
| Cymbol                 | Bescription                                                                       | Cymbol | Description                                  |  |  |
| REF                    | Catalogue Number                                                                  | LOT    | Batch code                                   |  |  |
| RUO                    | Research Use Only                                                                 | IVD    | In vitro diagnostic medical device           |  |  |
| $\overline{\Delta}$    | Use by                                                                            | 1      | Temperature limitation                       |  |  |
| ***                    | Manufacturer                                                                      | EC REP | European Community authorised representative |  |  |
| [-]                    | Without, does not contain                                                         | [+]    | With, contains                               |  |  |
| from Light             | Protect from light                                                                | À      | Consult accompanying documents               |  |  |
| $\overline{\bigcap_i}$ | Directs the user to consult instructions for use (IFU), accompanying the product. |        |                                              |  |  |

Copyright © Invitrogen Corporation. 08 February 2010

### **c-MET (Total) Assay Summary**

Incubate 100 µL Standard or Cell Extract (>1:10) for 2 hours at RT





aspirate and wash 4x

Incubate 100  $\mu$ L of Detection Antibody for 1 hour at RT



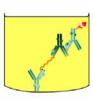


aspirate and wash 4x

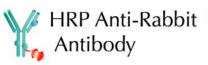
Incubate 100 µL of HRP Anti-Rabbit Antibody for 30 minutes at RT






aspirate and wash 4x

Incubate 100 µL of Stabilized Chromogen for 30 minutes at RT






Add 100 µL of Stop Solution and read at 450 nm **Total time: 4 hours** 







