

CD11b MicroBeads

human and mouse – lyophilized

Order no. 130-097-142

Contents

- 1. Description
 - 1.1 Principle of the MACS® Separation
 - 1.2 Background information
 - 1.3 Applications
 - 1.4 Reagent and instrument requirements
- 2. Protocol
 - 2.1 Reconstitution of MicroBeads
 - 2.2 Sample preparation
 - 2.3 Magnetic labeling of human PBMCs
 - 2.4 Magnetic labeling of mouse cells
 - 2.5 Magnetic separation
- 3. Example of a separation using CD11b MicroBeads

1. Description

Components 1 vial CD11b MicroBeads, human and

mouse – lyophilized: MicroBeads conjugated to monoclonal rat anti-human/mouse CD11b (Mac-1α) antibodies (isotype: rat IgG2b).

2 mL Reconstitution Buffer

Capacity For 10⁹ human total cells.

For 2×109 mouse total cells.

Product format Lyophilized MicroBeads.

Reconstitution Buffer contains stabilizer and

0.05% sodium azide.

Storage Store protected from light at 2-8 °C. Do not

freeze. The expiration date is indicated on the vial label. For information about reconstitution of the lyophilized MicroBeads and storage after

 $reconstitution\ refer\ to\ chapter\ 2.1.$

1.1 Principle of the MACS® Separation

First, the CD11b $^+$ cells are magnetically labeled with CD11b MicroBeads. Then, the cell suspension is loaded onto a MACS $^+$ Column, which is placed in the magnetic field of a MACS Separator. The magnetically labeled CD11b $^+$ cells are retained within the column. The unlabeled cells run through; this cell fraction is thus depleted of CD11b $^+$ cells. After removing the column from the magnetic field, the magnetically retained CD11b $^+$ cells can be eluted as the positively selected cell fraction.

1.2 Background information

CD11b MicroBeads have been developed for separation of human or mouse cells based on expression of the CD11b antigen. In humans, CD11b is strongly expressed on myeloid cells, and weakly expressed on NK cells and some activated lymphocytes. In mouse, the CD11b

antigen is expressed on monocytes/macrophages, and to a lower extent on granulocytes, NK cells, CD5 $^+$ B1 cells, and a subset of dendritic cells. The CD11b (Mac-1 α ; integrin α_M chain) antibody reacts with the 170 kDa α_M subunit of CD11b/CD18 heterodimer (Mac-1, $\alpha_M B_2$ intergrin). It functions as a receptor for complement (C3bi), fibrinogen, or clotting factor X.

1.3 Applications

- Positive selection or depletion of human monocytes/ macrophages and granulocytes from peripheral blood or lymphoid tissue.
- Positive selection or depletion of myeloid cells from human and mouse bone marrow.
- Positive selection or depletion of mouse macrophages from lymphoid tissue.

1.4 Reagent and instrument requirements

- Buffer: Prepare a solution containing phosphate-buffered saline (PBS), pH 7.2, 0.5% bovine serum albumin (BSA), and 2 mM EDTA by diluting MACS BSA Stock Solution (#130-091-376) 1:20 with autoMACS* Rinsing Solution (#130-091-222). Keep buffer cold (2–8 °C). Degas buffer before use, as air bubbles could block the column.
 - ▲ Note: EDTA can be replaced by other supplements such as anticoagulant citrate dextrose formula-A (ACD-A) or citrate phosphate dextrose (CPD). BSA can be replaced by other proteins such as human or mouse serum albumin, human or mouse serum, or fetal bovine serum (FBS). Buffers or media containing Ca²+ or Mg²+ are not recommended for use.
- MACS Columns and MACS Separators: Monocytes and macrophages can be enriched or depleted by using MS, LS, or XS Columns. For efficient depletion of myeloid cells from bone marrow, and depletion of granulocytes and NK cells the use of LD, CS, or D Columns is recommended. Positive selection or depletion can also be performed by using the autoMACS Pro or the autoMACS Separator.

Column	Max. number of labeled cells	Max. number of total cells	Separator
Positive selection			
MS	10 ⁷	2×10 ⁸	MiniMACS, OctoMACS, VarioMACS, SuperMACS II
LS	10 ⁸	2×10 ⁹	MidiMACS, QuadroMACS, VarioMACS, SuperMACS II
XS	10°	2×10 ¹⁰	SuperMACS II
Depletion			
LD	108	5×10 ⁸	MidiMACS, QuadroMACS, VarioMACS, SuperMACS II
CS	2×10 ⁸		VarioMACS, SuperMACS II
D	10 ⁹		SuperMACS II
Positive selection or depletion			
autoMACS	2×10 ⁸	4×10 ⁹	autoMACS Pro, autoMACS

Miltenyi Biotec Inc.

macs@miltenyibiotec.com

2303 Lindbergh Street, Auburn, CA 95602, USA

Phone 800 FOR MACS, +1 530 888 8871, Fax +1 530 888 8925

- ▲ Note: Column adapters are required to insert certain columns into the VarioMACS™ or SuperMACS™ II Separators. For details refer to the respective MACS Separator data sheet.
- (Optional) Fluorochrome-conjugated CD11b antibodies for flow cytometric analysis, e.g., CD11b-FITC (# 130-081-201), CD11b-PE (# 130-091-240), or CD11b-APC (# 130-091-241).
 For more information about antibodies refer to www.miltenyibiotec.com/antibodies.
- (Optional) Propidium Iodide Solution (# 130-093-233) or 7-AAD for flow cytometric exclusion of dead cells.
- (Optional) Dead Cell Removal Kit (# 130-090-101) for the depletion of dead cells.

2. Protocol

2.1 Reconstitution of MicroBeads

Reconstitute the lyophilized MicroBeads by adding all Reconstitution Buffer to the vial. Mix by pipetting up and down until resuspended. After reconstitution the MicroBeads are stable for 9 months at $2-8\,^{\circ}\text{C}$. Write the new expiration date after reconstitution on the vial label.

2.2 Sample preparation

Sample preparation of human PBMCs

When working with anticoagulated peripheral blood or buffy coat, peripheral blood mononuclear cells (PBMCs) should be isolated by density gradient centrifugation, for example, using Ficoll-Paque™.

▲ Note: To remove platelets after density gradient separation, resuspend cell pellet in buffer and centrifuge at 200×g for 10−15 minutes at 20 °C. Carefully aspirate supernatant. Repeat washing step.

When working with tissues or lysed blood, prepare a single-cell suspension using standard methods.

For details refer to the protocols section at www.miltenyibiotec.com/protocols.

Sample preparation of mouse tissue

When working with lymphoid organs, non-lymphoid tissues, or peripheral blood, prepare a single-cell suspension using manual methods or the gentleMACS $^{\infty}$ Dissociator.

For details refer to the protocols section at www.miltenyibiotec.com/protocols.

▲ Dead cells may bind non-specifically to MACS MicroBeads. To remove dead cells, we recommend using density gradient centrifugation or the Dead Cell Removal Kit (# 130-090-101).

, O.

2.3 Magnetic labeling of human PBMCs

- ▲ Work fast, keep cells cold, and use pre-cooled solutions. This will prevent capping of antibodies on the cell surface and non-specific cell labeling.
- ▲ Volumes for magnetic labeling given below are for up to 10⁷ total cells. When working with fewer than 10⁷ cells, use the same volumes as indicated. When working with higher cell numbers, scale up all reagent volumes and total volumes accordingly (e.g.

- for 2×10^7 total cells, use twice the volume of all indicated reagent volumes and total volumes).
- \blacktriangle For optimal performance it is important to obtain a single-cell suspension before magnetic labeling. Pass cells through 30 μm nylon mesh (Pre-Separation Filters, 30 μm # 130-041-407) to remove cell clumps which may clog the column. Moisten filter with buffer before use.
- ▲ The recommended incubation temperature is 2–8 °C. Higher temperatures and/or longer incubation times may lead to non-specific cell labeling. Working on ice may require increased incubation times.
- 1. Determine cell number.
- Centrifuge cell suspension at 300×g for 10 minutes. Aspirate supernatant completely.
- 3. Resuspend cell pellet in 80 μ L of buffer per 10⁷ total cells.
- 4. Add 20 μ L of CD11b MicroBeads per 10⁷ total cells.
- Mix well and incubate for 15 minutes in the refrigerator (2-8 °C).
- 6. (Optional) Add staining antibodies, e.g., 10 μ L of CD11b-FITC (# 130-081-201), and incubate for 5 minutes in the dark in the refrigerator (2–8 °C).
- 7. Wash cells by adding 1-2 mL of buffer per 10^7 cells and centrifuge at $300\times g$ for 10 minutes. Aspirate supernatant completely.
- 8. Resuspend up to 10^8 cells in 500 µL of buffer.
 - ▲ Note: For higher cell numbers, scale up buffer volume accordingly.
 - \blacktriangle Note: For depletion with LD Columns, resuspend up to 1.25×10^8 cells in $500~\mu L$ of buffer.
- 9. Proceed to magnetic separation (2.3).

2.4 Magnetic labeling of mouse cells

- ▲ Work fast, keep cells cold, and use pre-cooled solutions. This will prevent capping of antibodies on the cell surface and non-specific cell labeling.
- ▲ Volumes for magnetic labeling given below are for up to 10^7 total cells. When working with fewer than 10^7 cells, use the same volumes as indicated. When working with higher cell numbers, scale up all reagent volumes and total volumes accordingly (e.g. for 2×10^7 total cells, use twice the volume of all indicated reagent volumes and total volumes).
- \blacktriangle For optimal performance it is important to obtain a single-cell suspension before magnetic labeling. Pass cells through 30 μm nylon mesh (Pre-Separation Filters, 30 μm # 130-041-407) to remove cell clumps which may clog the column. Moisten filter with buffer before use.
- ▲ The recommended incubation temperature is 2–8 °C. Higher temperatures and/or longer incubation times may lead to non-specific cell labeling. Working on ice may require increased incubation times.
- Determine cell number.
- 2. Centrifuge cell suspension at 300×g for 10 minutes. Aspirate supernatant completely.

- 3. Resuspend cell pellet in 90 μ L of buffer per 10⁷ total cells.
- 4. Add 10 μL of CD11b MicroBeads per 10⁷ total cells.
- 5. Mix well and incubate for 15 minutes in the refrigerator (2–8 $^{\circ}$ C).
- 6. (Optional) Add staining antibodies, e.g., 10 μ L of CD11b-FITC (# 130-081-201), and incubate for 5 minutes in the dark in the refrigerator (2–8 °C).
- 7. Wash cells by adding $1-2\,\mathrm{mL}$ of buffer per 10^7 cells and centrifuge at $300\times\mathrm{g}$ for $10\,\mathrm{minutes}$. Aspirate supernatant completely.
- 8. Resuspend up to 10^8 cells in 500 μ L of buffer.
 - ▲ Note: For higher cell numbers, scale up buffer volume accordingly.
 - \blacktriangle Note: For depletion with LD Columns, resuspend up to 1.25×10^8 cells in $500~\mu L$ of buffer.
- 9. Proceed to magnetic separation (2.3).

2.5 Magnetic separation

- ▲ Choose an appropriate MACS Column and MACS Separator according to the number of total cells and the number of CD11b⁺ cells. For details refer to the table in section 1.4.
- ▲ Always wait until the column reservoir is empty before proceeding to the next step.

Magnetic separation with MS or LS Columns

- Place column in the magnetic field of a suitable MACS Separator. For details refer to the respective MACS Column data sheet.
- 2. Prepare column by rinsing with the appropriate amount of buffer.

MS: 500 μL LS: 3 mL

- 3. Apply cell suspension onto the column. Collect flow-through containing unlabeled cells.
- 4. Wash column with the appropriate amount of buffer. Collect unlabeled cells that pass through and combine with the flow-through from step 3.

MS: $3\times500~\mu L$ LS: $3\times3~mL$

- ▲ Note: Perform washing steps by adding buffer aliquots only when the column reservoir is empty.
- 5. Remove column from the separator and place it on a suitable collection tube.
- 6. Pipette the appropriate amount of buffer onto the column. Immediately flush out the magnetically labeled cells by firmly pushing the plunger into the column.

MS: 1 mL LS: 5 mL

 (Optional) To increase the purity of CD11b⁺ cells, the eluted fraction can be enriched over a second MS or LS Column. Repeat the magnetic separation procedure as described in steps 1 to 6 by using a new column.

Magnetic separation with XS Columns

For instructions on the column assembly and the separation refer to the XS Column data sheet.

Depletion with LD Columns

- Place LD Column in the magnetic field of a suitable MACS Separator. For details refer to the LD Column data sheet.
- 2. Prepare column by rinsing with 2 mL of buffer.
- 3. Apply cell suspension onto the column.
- 4. Collect unlabeled cells that pass through and wash column with 2×1 mL of buffer. Collect total flow-through; this is the unlabeled cell fraction. Perform washing steps by adding buffer two times. Only add new buffer when the column reservoir is empty.

Depletion with CS Columns

- Assemble CS Column and place it in the magnetic field of a suitable MACS Separator. For details refer to the CS Column data sheet
- Prepare column by filling and rinsing with 60 mL of buffer. Attach a 22G flow resistor to the 3-way stopcock of the assembled column. For details refer to the CS Column data sheet
- 3. Apply cell suspension onto the column.
- Collect unlabeled cells that pass through and wash column with 30 mL buffer from the top. Collect total flow-through; this is the unlabeled cell fraction.

Depletion with D Columns

For instructions on column assembly and separation refer to the D Column data sheet.

Magnetic separation with the autoMACS® Pro Separator or the autoMACS® Separator

- ▲ Refer to the respective user manual for instructions on how to use the autoMACS* Pro Separator or the autoMACS Separator.
- ▲ Buffers used for operating the autoMACS Pro Separator or the autoMACS Separator should have a temperature of ≥10 °C.
- ▲ Program choice depends on the isolation strategy, the strength of magnetic labeling, and the frequency of magnetically labeled cells. For details refer to the section describing the cell separation programs in the respective user manual.

Magnetic separation with the autoMACS® Pro Separator

- 1. Prepare and prime the instrument.
- 2. Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube in row A of the tube rack and the fraction collection tubes in rows B and C.
- 3. For a standard separation choose one of the following programs:

Positive selection: Possel

Collect positive fraction in row C of the tube rack.

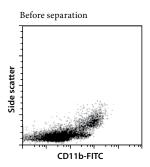
Depletion: Depletes

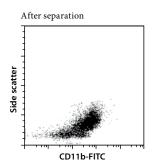
Collect negative fraction in row B of the tube rack.

Magnetic separation with the autoMACS® Separator

- 1. Prepare and prime the instrument.
- 2. Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube at the uptake port and the fraction collection tubes at port neg1 and port pos1.
- 3. For a standard separation choose one of the following programs:

Positive selection: Possel


Collect positive fraction from outlet port posl.


Depletion: Depletes

Collect negative fraction from outlet port neg1.

3. Example of a separation using CD11b MicroBeads

CD11b MicroBeads were reconstituted as described in 2.1. CD11b⁺ cells were isolated from human PBMCs using CD11b MicroBeads, an MS Column, and a MiniMACS™ Separator. Cells were fluorescently stained with CD11b-FITC (# 130-081-201) and analyzed by flow cytometry using the MACSQuant® Analyzer. Cell debris and dead cells were excluded from the analysis based on scatter signals and propidium iodide fluorescence.

All protocols and data sheets are available at www.miltenyibiotec.com.

Warnings

Reagents contain sodium azide. Under acidic conditions sodium azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. These precautions are recommended to avoid deposits in plumbing where explosive conditions may develop.

Warranty

The products sold hereunder are warranted only to be free from defects in workmanship and material at the time of delivery to the customer. Miltenyi Biotec GmbH makes no warranty or representation, either expressed or implied, with respect to the fitness of a product for a particular purpose. There are no warranties, expressed or implied, which extend beyond the technical specifications of the products. Miltenyi Biotec GmbH's liability is limited to either replacement of the products or refund of the purchase price. Miltenyi Biotec GmbH is not liable for any property damage, personal injury or economic loss caused by the product.

autoMACS, MACS, and MACSQuant are registered trademarks and gentleMACS, MidiMACS, MiniMACS, OctoMACS, QuadroMACS, SuperMACS, and VarioMACS are trademarks of Miltenyi Biotec GmbH.

Ficoll-Paque is a trademark of GE Healthcare companies.

Copyright © 2011 Miltenyi Biotec GmbH. All rights reserved.