

CD8 MicroBeads human

Order no. 130-045-201

Contents

1. Description

- 1.1 Principle of the MACS® Separation
- 1.2 Background information
- 1.3 Applications
- 1.4 Reagent and instrument requirements
- 2. Protocol
 - 2.1 Sample preparation
 - 2.2 Magnetic labeling
 - 2.3 Magnetic separation
- Example of a separation using the CD8 MicroBeads 3.
- References 4.

Description 1.

Components	2 mL CD8 MicroBeads, human: MicroBeads conjugated to monoclonal anti- human CD8 antibodies (isotype: mouse IgG2a).		
Capacity	For 10 ⁹ total cells, up to 100 separations.		
Product format	CD8 MicroBeads are supplied in buffer containing stabilizer and 0.05% sodium azide.		
Storage	Store protected from light at $2-8$ °C. Do not freeze. The expiration date is indicated on the vial label.		

1.1 Principle of the MACS® Separation

First, the CD8⁺ cells are magnetically labeled with CD8 MicroBeads. Then, the cell suspension is loaded onto a MACS* Column, which is placed in the magnetic field of a MACS Separator. The magnetically labeled CD8⁺ cells are retained within the column. The unlabeled cells run through; this cell fraction is thus depleted of CD8⁺ cells. After removing the column from the magnetic field, the magnetically retained CD8⁺ cells can be eluted as the positively selected cell fraction.

1.2 Background information

The CD8 antigen forms a complex together with the T cell receptor and acts as an accessory molecule in the recognition of MHC class I/peptide complexes by the TCR heterodimer on CD8⁺ cytotoxic T cells. The CD8 molecule consists of either an α/β heterodimer or an a/a homodimer. It is strongly expressed on cytotoxic T cells and dimly on a subset of NK cells. CD8 is expressed on most thymocytes and on about one third of all peripheral blood T cells. CD8⁺ cytotoxic T cells play an important role in the killing of virusinfected cells and tumor cells.

For isolation of highly pure cytotoxic T cells using CD8 MicroBeads, depletion of NK cells with CD56 MicroBeads (# 130-050-401) prior to positive selection with CD8 MicroBeads is recommended.

<u>Miltenyi Biotec</u>

Miltenvi Biotec GmbH Friedrich-Ebert-Str. 68 51429 Bergisch Gladbach, Germany Phone +49 2204 8306-0 Fax +49 2204 85197

1.3 Applications

- Positive selection or depletion of cytotoxic T cells from peripheral blood, cord blood, lymph nodes, thymus, skin biopsies¹, and spleen.
- Isolation of cytotoxic T cells for further functional studies, such as proliferation assays², cytotoxicity assays^{2,3}, and for analysis of in vitro cytokine production⁴.
- Depletion of CD8⁺ T cells from human peripheral blood mononuclear cells (PBMCs) for immune reconstitution experiments in SCID mice⁵.

1.4 Reagent and instrument requirements

Buffer: Prepare a solution containing phosphate-buffered saline (PBS), pH 7.2, 0.5% bovine serum albumin (BSA), and 2 mM EDTA by diluting MACS BSA Stock Solution (# 130-091-376) 1:20 with autoMACS[™] Rinsing Solution (# 130-091-222). Keep buffer cold (2-8 °C). Degas buffer before use, as air bubbles could block the column.

 \blacktriangle Note: EDTA can be replaced by other supplements such as anticoagulant citrate dextrose formula-A (ACD-A) or citrate phosphate dextrose (CPD). BSA can be replaced by other proteins such as human serum albumin, human serum, or fetal bovine serum. Buffers or media containing Ca²⁺ or Mg²⁺ are not recommended for use.

MACS Columns and MACS Separators: CD8⁺ cells can be enriched by using MS, LS, or XS Columns or depleted with the use of LD, CS, or D Columns. Cells which strongly express the CD8 antigen can also be depleted using MS, LS, or XS Columns. Positive selection or depletion can also be performed by using the autoMACS or the autoMACS Pro Separator.

Column	Max. number of labeled cells	Max. number of total cells	Separator	
Positive selection				
MS	10 ⁷	2×10 ⁸	MiniMACS, OctoMACS, VarioMACS, SuperMACS	
LS	10 ⁸	2×10°	MidiMACS, QuadroMACS, VarioMACS, SuperMACS	
XS	10 ⁹	2×10 ¹⁰	SuperMACS	
Depletion				
LD	10 ⁸	5×10 ⁸	MidiMACS, QuadroMACS, VarioMACS, SuperMACS	
CS	2×10 ⁸		VarioMACS, SuperMACS	
D	10 ⁹		SuperMACS	
Positive selection or depletion				
autoMAC	S 2×10 ⁸	4×10 ⁹	autoMACS, autoMACS Pro	

▲ Note: Column adapters are required to insert certain columns into the VarioMACS[™] or SuperMACS[™] Separators. For details see the respective MACS Separator data sheet.

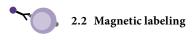
www.miltenyibiotec.com

Miltenvi Biotec Inc. 2303 Lindbergh Street, Auburn, CA 95602, USA Phone 800 FOR MACS, +1 530 888 8871 Fax +1 530 888 8925

page 1/4

- (Optional) Fluorochrome-conjugated CD8 antibody for flow cytometric analysis, e.g., CD8-FITC (# 130-080-601), CD8-PE (# 130-091-084), or CD8-APC (# 130-091-076). For more information about other fluorochrome conjugates see www.miltenyibiotec.com.
- (Optional) Propidium iodide (PI) or 7-AAD for flow cytometric exclusion of dead cells.
- (Optional) Dead Cell Removal Kit (# 130-090-101) for the depletion of dead cells.
- (Optional) Pre-Separation Filters (# 130-041-407) to remove cell clumps.

2. Protocol


2.1 Sample preparation

When working with anticoagulated peripheral blood or buffy coat, peripheral blood mononuclear cells (PBMCs) should be isolated by density gradient centrifugation, for example, using Ficoll-Paque^{**}. For details see the General Protocols section of the respective separator user manual. The General Protocols are also available at www.miltenyibiotec.com/protocols.

▲ Note: To remove platelets after density gradient separation, resuspend cell pellet in buffer and centrifuge at 200×g for 10−15 minutes at 20 °C. Carefully aspirate supernatant. Repeat washing step.

When working with tissues or lysed blood, prepare a single-cell suspension using standard methods. For details see the General Protocols section of the respective separator user manual. The General Protocols are also available at www.miltenyibiotec.com/ protocols.

▲ Dead cells may bind non-specifically to MACS MicroBeads. To remove dead cells, we recommend using density gradient centrifugation or the Dead Cell Removal Kit (# 130-090-101).

▲ Work fast, keep cells cold, and use pre-cooled solutions. This will prevent capping of antibodies on the cell surface and non-specific cell labeling.

▲ Volumes for magnetic labeling given below are for up to 10^7 total cells. When working with fewer than 10^7 cells, use the same volumes as indicated. When working with higher cell numbers, scale up all reagent volumes and total volumes accordingly (e.g. for 2×10^7 total cells, use twice the volume of all indicated reagent volumes and total volumes).

▲ For optimal performance it is important to obtain a single-cell suspension before magnetic separation. Pass cells through 30 μ m nylon mesh (Pre-Separation Filters, # 130-041-407) to remove cell clumps which may clog the column. Wet filter with buffer before use.

▲ The recommended incubation temperature is 2–8 °C. Working on ice may require increased incubation times. Higher temperatures and/or longer incubation times may lead to non-specific cell labeling.

1. Determine cell number.

140-000-034.0

2. Centrifuge cell suspension at 300×g for 10 minutes. Aspirate supernatant completely.

- 3. Resuspend cell pellet in 80 μ L of buffer per 10⁷ total cells.
- 4. Add 20 μL of CD8 MicroBeads per 10⁷ total cells.
- 5. Mix well and incubate for 15 minutes in the refrigerator (2-8 °C).
- 6. (Optional) Add staining antibodies, e.g., $10 \ \mu L$ of CD8-FITC (# 130-080-601), and incubate for 5 minutes in the dark in the refrigerator (2–8 °C).
- Wash cells by adding 1-2 mL of buffer per 10⁷ cells and centrifuge at 300×g for 10 minutes. Aspirate supernatant completely.
- 8. Resuspend up to 10^8 cells in 500 µL of buffer.

▲ Note: For higher cell numbers, scale up buffer volume accordingly.
▲ Note: For depletion with LD Columns, resuspend up to 1.25×10⁸ cells in 500 µL of buffer.

9. Proceed to magnetic separation (2.3).

2.3 Magnetic separation

▲ Choose an appropriate MACS Column and MACS Separator according to the number of total cells and the number of CD8⁺ cells. For details see table in section 1.4.

Magnetic separation with MS or LS Columns

- 1. Place column in the magnetic field of a suitable MACS Separator. For details see the respective MACS Column data sheet.
- 2. Prepare column by rinsing with the appropriate amount of buffer:
 - MS: 500 μL LS: 3 mL
- 3. Apply cell suspension onto the column.
- Collect unlabeled cells that pass through and wash column with the appropriate amount of buffer. Collect total effluent; this is the unlabeled cell fraction. Perform washing steps by adding buffer three times. Only add new buffer when the column reservoir is empty. MS: 3×500 µL LS: 3×3 mL
- 5. Remove column from the separator and place it on a suitable collection tube.
- Pipette the appropriate amount of buffer onto the column. Immediately flush out the magnetically labeled cells by firmly pushing the plunger into the column. MS: 1 mL LS: 5 mL
- (Optional) To increase the purity of CD8⁺ cells, the eluted fraction can be enriched over a second MS or LS Column. Repeat the magnetic separation procedure as described in steps 1 to 6 by using a new column.

Magnetic separation with XS Columns

For instructions on the column assembly and the separation refer to the XS Column data sheet.

Depletion with LD Columns

1. Place LD Column in the magnetic field of a suitable MACS Separator. For details see LD Column data sheet.

<u>Miltenyi Biotec</u>

Unless otherwise specifically indicated, Miltenyi Biotec products and services are for research use only and not for diagnostic or therapeutic use.

- 2. Prepare column by rinsing with 2 mL of buffer.
- 3. Apply cell suspension onto the column.
- 4. Collect unlabeled cells that pass through and wash column with 2×1 mL of buffer. Collect total effluent; this is the unlabeled cell fraction. Perform washing steps by adding buffer two times. Only add new buffer when the column reservoir is empty.

Depletion with CS Columns

- 1. Assemble CS Column and place it in the magnetic field of a suitable MACS Separator. For details see CS Column data sheet.
- 2. Prepare column by filling and rinsing with 60 mL of buffer. Attach a 22G flow resistor to the 3-way stopcock of the assembled column. For details see CS Column data sheet.
- 3. Apply cell suspension onto the column.
- 4. Collect unlabeled cells that pass through and wash column with 30 mL buffer from the top. Collect total effluent; this is the unlabeled cell fraction.

Depletion with D Columns

For instructions on column assembly and separation refer to the D Column data sheet.

Magnetic separation with the autoMACS[™] Separator or the autoMACS[™] Pro Separator

▲ Refer to the respective user manual for instructions on how to use the autoMACS[™] Separator or the autoMACS Pro Separator.

▲ Buffers used for operating the autoMACS Separator or the autoMACS Pro Separator should have a temperature of ≥ 10 °C.

▲ Program choice depends on the isolation strategy, the strength of magnetic labeling, and the frequency of magnetically labeled cells. For details refer to the section describing the cell separation programs in the respective user manual.

Magnetic separation with the autoMACS[™] Separator

- 1. Prepare and prime the instrument.
- 2. Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube at the uptake port and the fraction collection tubes at port negl and port posl.
- 3. For a standard separation choose one of the following programs:

Positive selection: "Possel" Collect positive fraction from outlet port pos1.

Depletion: "Depletes" Collect negative fraction from outlet port neg1.

Magnetic separation with the autoMACS[™] Pro Separator

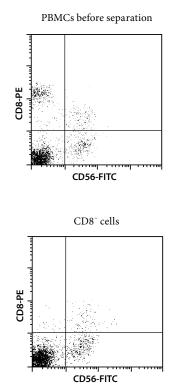
- 1. Prepare and prime the instrument.
- 2. Apply tube containing the sample and provide tubes for collecting the labeled and unlabeled cell fractions. Place sample tube in row A of the tube rack and the fraction collection tubes in rows B and C.

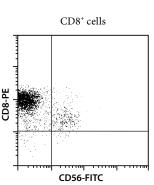
<u>Miltenyi Biotec</u>

140-000-034.06

Unless otherwise specifically indicated, Miltenyi Biotec products and services are for research use only and not for diagnostic or therapeutic use. 3. For a standard separation choose one of the following programs:

Positive selection: "Possel"


Collect positive fraction in row C of the tube rack.


Depletion: "Depletes"

Collect negative fraction in row B of the tube rack.

3. Example of a separation using the CD8 MicroBeads

CD8⁺ cells were isolated from human PBMCs using the CD8 MicroBeads, an LS Column, and a MidiMACS[™] Separator. Cells are fluorescently stained with CD8-PE (# 130-091-084) and CD56-FITC. Cell debris and dead cells are excluded from the analysis based on scatter signals and PI fluorescence.

www.miltenyibiotec.com

4. References

- Akdis, M. *et al.* (1999) Skin homing (cutaneous lymphocyte-associated antigenpositive) CD8⁺ T cells respond to superantigen and contribute to eosinophilia and IgE production in atopic dermatitis. J. Immunol. 163: 466–475. [862]
- Parra, E. *et al.* (1997) The role of B7-1 and LFA-3 in costimulation of CD8⁺ T cells. J. Immunol. 158: 637–642. [397]
- Turner, J. and Dockrell, H. M. (1996) Stimulation of human peripheral blood mononuclear cells with live Mycobacterium bovis BCG activates cytolytic CD8⁺ T cells *in vitro*. Immunology 87: 339–342. [183]
- Akdis, A. C. et al. (1995) Cytokine immunotrapping: an assay to study the kinetics of production and consumption or degradation of human interferongamma. J. Immnol. Methods 182: 251–261. [221]
- Walker, W. and Gallagher, G. (1994) The *in vivo* production of specific human antibodies by vaccination of human-PBL-SCID mice. Immunology 83: 163–170. [132]

All protocols and data sheets are available at www.miltenyibiotec.com.

Warnings

Reagents contain sodium azide. Under acidic conditions sodium azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. These precautions are recommended to avoid deposits in plumbing where explosive conditions may develop.

Warranty

The products sold hereunder are warranted only to be free from defects in workmanship and material at the time of delivery to the customer. Miltenyi Biotec GmbH makes no warranty or representation, either expressed or implied, with respect to the fitness of a product for a particular purpose. There are no warranties, expressed or implied, which extend beyond the technical specifications of the products. Miltenyi Biotec GmbH's liability is limited to either replacement of the products or refund of the purchase price. Miltenyi Biotec GmbH is not liable for any property damage, personal injury or economic loss caused by the product.

MACS is a registered trademark and autoMACS, MidiMACS, MiniMACS, OctoMACS, QuadroMACS, SuperMACS, and VarioMACS are trademarks of Miltenyi Biotec GmbH.

Ficoll-Paque is a trademark of GE Healthcare companies.

© 2008 Miltenyi Biotec GmbH.

<u>Miltenyi Biotec</u>

Unless otherwise specifically indicated, Miltenyi Biotec products and services are for research use only and not for diagnostic or therapeutic use.

