Technical Data Sheet

Purified Mouse Anti-Myosin Vb/Myr 6

Product Information

 Material Number:
 611608

 Size:
 50 μg

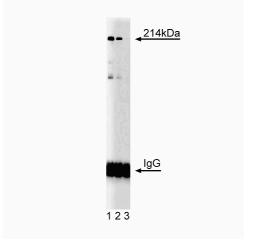
 Concentration:
 250 μg/ml

 Clone:
 18/Myr6

Immunogen: Rat Myr6 aa. 940-1051

 Isotype:
 Mouse IgG1

 Reactivity:
 QC Testing: Rat


 Target MW:
 214 kDa

Storage Buffer: Aqueous buffered solution containing BSA, glycerol, and ≤0.09% sodium

azide.

Description

Myosins are proteins that form oligomers consisting of two heavy chains and varying numbers of light chains. Many classes of myosin superfamily proteins which have similar N-terminal motor domains but divergent C-terminal domains have been characterized. Class V myosins interact via their C-terminal tails with specific proteins involved in organelle transport. In vertebrates, the myosin V family includes mouse myosin Va (dilute myosin) and Vb, rat myosin Vb (myosin from rat 6; myr 6), and chicken p190. Myr 6 includes an N-terminal globular domain, six IQ motifs in the neck region, two coiled-coil domains on each side (cc) of a PEST calpain cleavage region, and a C-terminal tail that is homologous to dilute myosin, AF-6, and GAD. Myr 6 is expressed highly in mouse heart, kidney, testis, liver, and lung. In rat brain, it is expressed highly in dentate gyrus, medial mamillary nuclei, amygdala, and choroid plexus. The tail region of myr 6 interacts with the C-terminal domain of BERP, a RING-B-box-coiled-coil protein that has been implicated in PC12 cell neurite outgrowth. Thus, myr 6 may function in the transport of organelles in a variety of neural and non-neuronal tissues.

Western blot analysis of Myr6 on rat testis lysate. Lane 1: 1:250, lane 2: 1:500, lane 3: 1:1000 dilution of Myr6.

Preparation and Storage

The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography. Store undiluted at -20° C.

Application Notes

Application

Application	
Western blot	Routinely Tested
Immunofluorescence	Not Recommended

BD Biosciences

bdbiosciences.com

 United States
 Canada
 Europe
 Japan
 Asia Pacific
 Latin America/Caribbean

 877.232.8995
 888.259.0187
 32.53.720.550
 0120.8555.90
 65.6861.0633
 55.11.5185.9995

For country-specific contact information, visit bdbiosciences.com/how_to_order/

Conditions: The information disclosed herein is not to be construed as a recommendation to use the above product in violation of any patents. BD Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Purchase does not include or carry any right to resell or transfer this product either as a stand-alone product or as a component of another product. Any use of this product other than the permitted use without the express written authorization of Becton Dickinson and Company is strictly prohibited. For Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale.

BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2008 BD

611608 Rev. 1 Page 1 of 2

Product Notices

- 1. Since applications vary, each investigator should titrate the reagent to obtain optimal results.
- 2. Please refer to www.bdbiosciences.com/pharmingen/protocols for technical protocols.
- 3. Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding to avoid accumulation of potentially explosive deposits in plumbing.
- 4. Source of all serum proteins is from USDA inspected abattoirs located in the United States.

References

Mermall V, Post PL, Mooseker MS. Unconventional myosins in cell movement, membrane traffic, and signal transduction. *Science*. 1998; 279(5350):527-533. (Biology)

Zhao LP, Koslovsky JS, Reinhard J. Cloning and characterization of myr 6, an unconventional myosin of the dilute/myosin-V family. *Proc Natl Acad Sci U S A.* 1996; 93(20):10826-10831.(Biology)

611608 Rev. 1 Page 2 of 2