

TaqMan® Human Nuclear Receptor Array

This array is part of a collection of TaqMan® Gene Signature Arrays that enable analysis of hundreds of TaqMan® Gene Expression Assays on a micro fluidic card with minimal effort.

Nuclear hormone receptors (NRs) are ligand-activated intracellular transcription factors that have profound effects on development, homeostasis and detoxification. Ligands that are recognized by NRs include: endogenous hormones, vitamins A and D, drugs and xenobiotic compounds. Several NRs, called orphan receptors, have no known endogenous ligands. Their low affinity for fatty acids, bile acids and/or sterols (e.g., FXR, LXR and PPAR) suggests that they function as metabolic sensors. Other NRs act as xenobiotic sensors by up-regulating the expression of cytochrome P450 enzymes that are xenobiotic metabolizers. NRs function with co-activators and co-repressors to up- or down-regulate the expression of genes and can regulate the expression of a large number of genes.

The NR family is highly conserved in vertebrates. They have a modular domain structure consisting of a DNA-binding domain and a ligand-binding domain. Other domains include a modulatory A/B domain, the hinge D domain, and a variable C-terminal F domain that is missing in some NRs. The TaqMan® Nuclear Receptor Gene Signature Array contains 48 human NRs (and 16 controls) and has been classified according to sequence homology into seven subfamilies.

Group	Genes	Gene Symbols								
Subfamily 0	2	AHC (NR0B1), SHP (NR0B2)								
Subfamily 1	19	NR1D1, NR1D2, NR1H2–4, NR1I2,NR1I3, PPARA, PPARD, PPARG, RARA, RARB, RARG, RORA, RORB, RORC, THRA, THRB, VDR								
Subfamily 2	12	HNF4A,HNF4G, NR2C1, NR2C2, NR2E1, NR2E3, NR2F1, NR2F2, NR2F6, RXRA, RXRB, RXRG								
Subfamily 3	9	AR, ESR1, ESR2, ESRRA, ESRRB, ESRRG, NR3C1, NR3C2, PGR								
Subfamily 4	3	NR4A1-3								
Subfamily 5	2	NR5A1, NR5A2								
Subfamily 6	1	NR6A1								
Controls	16	18S, ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, YWHAZ								

References:

Krasowski, M.D. et al. Nucl. Recept. 2005, 30;3:2

Novac, N. & Heinzel, T. *Curr. Drug Targets Inflamm. Allergy* 2004, 3(4): 335–46

Nuclear Receptors Nomenclature Committee. *Cell* 1999, 97(2):161–3

Mohan, R. & Heyman, R.A. *Curr. Top. Med. Chem.* 2003, 3(14):1637–47

Klinge, C.M. Steroids 2000, 65(5)227-51

Zhang, Z. et al. Genome Res. 2004, 14(4);580-90

TagMan® Gene Signature Arrays

Gene Signature Array Name	# of Targets/Controls	Format	Pack Size	Part Number
Human Nuclear Receptor Array	48/16	Format 64	4 arrays/pack	4379961

Human Nuclear Receptor Array

А	NR0B1	NR0B1	NR0B1	NR0B2	NR0B2	NR0B2	NR1D1	NR1D1	NR1D1	188	188	188	NR1D2	NR1D2	NR1D2	NR1H2	NR1H2	NR1H2	NR1H3	NR1H3	NR1H3	NR1H4	NR1H4	NR1H4	
В	NR112	NR1I2	NR1I2	NR1I3	NR1I3	NR1I3	PPARA	PPARA	PPARA	PPARD	PPARD	PPARD	PPARG	PPARG	PPARG	RARA	RARA	RARA	RARB	RARB	RARB	RARG	RARG	RARG	
C	RORA	RORA	RORA	RORB	RORB	RORB	RORC	RORC	RORC	THRA	THRA	THRA	THRB	THRB	THRB	VDR	VDR	VDR	HNF4A	HNF4A	HNF4A	HNF4G	HNF4G	HNF4G	2 2
D	NR2C1	NR2C1	NR2C1	NR2C2	NR2C2	NR2C2	NR2E1	NR2E1	NR2E1	NR2E3	NR2E3	NR2E3	NR2F1	NR2F1	NR2F1	NR2F2	NR2F2	NR2F2	NR2F6	NR2F6	NR2F6	RXRA	RXRA	RXRA	
Ε	RXRB	RXRB	RXRB	RXRG	RXRG	RXRG	AR	AR	AR	ESR1	ESR1	ESR1	ESR2	ESR2	ESR2	ESRRA	ESRRA	ESRRA	ESRRB	ESRRB	ESRRB	ESRRG	ESRRG	ESRRG	3 =
F	NR3C1	NR3C1	NR3C1	NR3C2	NR3C2	NR3C2	PGR	PGR	PGR	NR4A1	NR4A1	NR4A1	NR4A2	NR4A2	NR4A2	NR4A3	NR4A3	NR4A3	NR5A1	NR5A1	NR5A1	NR5A2	NR5A2	NR5A2	-
G	NR6A1	NR6A1	NR6A1	ACTB	ACTB	ACTB	B2M	B2M	B2M	GUSB	GUSB	GUSB	HMBS	HMBS	HMBS	HPRT1	HPRT1	HPRT1	IPO8	IPO8	IPO8	PGK1	PGK1	PGK1	
Н	POLR2A	POLR2A	POLR2A	PPIA	PPIA	PPIA	RPLPO	RPLPO	RPLPO	TBP	TBP	TBP	TFRC	TFRC	TFRC	UBC	UBC	UBC	YWHAZ	YWHAZ	YWHAZ	GAPDH	GAPDH	GAPDH	
- 1	NROB1	NROB1	NROB1	NROB2	NROB2	NROB2	NR1D1	NR1D1	NR1D1	188	188	188	NR1D2	NR1D2	NR1D2	NR1H2	NR1H2	NR1H2	NR1H3	NR1H3	NR1H3	NR1H4	NR1H4	NR1H4	5
J	NR1I2	NR1I2	NR1I2	NR1I3	NR1I3	NR1I3	PPARA	PPARA	PPARA	PPARD	PPARD	PPARD	PPARG	PPARG	PPARG	RARA	RARA	RARA	RARB	RARB	RARB	RARG	RARG	RARG	, ,
K	RORA	RORA	RORA	RORB	RORB	RORB	RORC	RORC	RORC	THRA	THRA	THRA	THRB	THRB	THRB	VDR	VDR	VDR	HNF4A	HNF4A	HNF4A	HNF4G	HNF4G	HNF4G	6 2
L	NR2C1	NR2C1	NR2C1	NR2C2	NR2C2	NR2C2	NR2E1	NR2E1	NR2E1	NR2E3	NR2E3	NR2E3	NR2F1	NR2F1	NR2F1	NR2F2	NR2F2	NR2F2	NR2F6	NR2F6	NR2F6	RXRA	RXRA	RXRA	
M	RXRB	RXRB	RXRB	RXRG	RXRG	RXRG	AR	AR	AR	ESR1	ESR1	ESR1	ESR2	ESR2	ESR2	ESRRA	ESRRA	ESRRA	ESRRB	ESRRB	ESRRB	ESRRG	ESRRG	ESRRG	77
N	NR3C1	NR3C1	NR3C1	NR3C2	NR3C2	NR3C2	PGR	PGR	PGR	NR4A1	NR4A1	NR4A1	NR4A2	NR4A2	NR4A2	NR4A3	NR4A3	NR4A3	NR5A1	NR5A1	NR5A1	NR5A2	NR5A2	NR5A2	
0	NR6A1	NR6A1	NR6A1	ACTB	ACTB	ACTB	B2M	B2M	B2M	GUSB	GUSB	GUSB	HMBS	HMBS	HMBS	HPRT1	HPRT1	HPRT1	IPO8	IPO8	IP08	PGK1	PGK1	PGK1	88
Р	POLR2A	POLR2A	POLR2A	PPIA	PPIA	PPIA	RPLPO	RPLPO	RPLPO	TBP	TBP	TBP	TFRC	TFRC	TFRC	UBC	UBC	UBC	YWHAZ	YWHAZ	YWHAZ	GAPDH	GAPDH	GAPDH	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Port

More arrays will be available soon! Register to receive new Gene Signature Array product announcements, or suggest an array at **taqmanarray.appliedbiosystems.com**

For Research Use Only. Not for use in diagnostic procedures.

Practice of the patented 5' Nuclease Process requires a license from Applied Biosystems. Purchase of the TaqMan® Human Nuclear Receptor Array includes an immunity from suit under patents specified in the product insert to use only the amount purchased for the purchaser's own internal research when used with the separate purchase of an Authorized 5' Nuclease Core Kit. No other patent rights are conveyed expressly, by implication, or by estoppel. For further information on purchasing licenses contact the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California 94404, USA.

The TaqMan® Array is covered by U.S. Patents Nos. 6,514,750, 6,942,837, 7,211,443, and 7,235,406. Micro Fluidic Card developed in collaboration with 3M Company.

© Copyright 2008. Applied Biosystems. All rights reserved. Applied Biosystems, and AB (Design) are registered trademarks of Applera Corporation or its subsidiaries in the US and/or certain other countries. TaqMan is a registered trademark of Roche Molecular Systems, Inc.

Printed in the USA, 04/2008 Publication 127MI62-02

International Sales