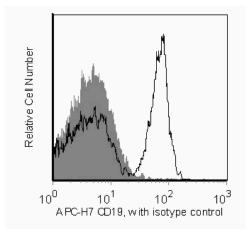
Technical Data Sheet

APC-H7 Mouse Anti-Human CD19

Product Information


560727 **Material Number:** 50 tests Size: 5 µl Vol. per Test: HIB19 Clone: Isotype: Mouse IgG1, κ Reactivity: QC Testing: Human

V CD19.11 Workshop:

Storage Buffer: Aqueous buffered solution containing BSA, protein stabilizer, and ≤0.09%

Description

The HIB19 monoclonal antibody specificially binds to the 95 kDa type I transmembrane CD19 glycoprotein. CD19 is expressed during all stages of B-cell maturation and differentiation, except on plasma cells. CD19 is also present on follicular dendritic cells. It is not found on T cells or on normal granulocytes. CD19 is a signal transduction molecule that regulates B cell development, activation, proliferation and differentiation. It associates with the complement receptor 2 (CD21), TAPA-1 (CD81), Leu 13, and/or MHC class II to form a signal transduction complex on the surface of B cells. Anti-CD19 clone HIB19 partially blocks the binding of clone B43, another CD19-specific monoclonal antibody.

Flow cytometric analysis of CD19 on human lysed whole blood. Human lysed whole blood was stained with the APC-H7 Mouse Anti-Human CD19 antibody (unshaded) or with a APC-H7 Mouse IgG1, κ isotype control (shaded). Histograms were derived from gated events based on light scattering characteristics for lymphocytes. Flow cytometry was performed on a BD™ LSR II flow cytometry system.

Preparation and Storage

Store undiluted at 4°C and protected from prolonged exposure to light. Do not freeze.

The monoclonal antibody was purified from tissue culture supernatant or ascites by affinity chromatography.

The antibody was conjugated with APC-H7 under optimum conditions, and unconjugated antibody and APC-H7 were removed.

Application Notes

Application

Flow cytometry	Routinely Tested

Suggested Companion Products

Catalog Number	Name	Size	Clone
560167	APC-H7 Mouse IgG1, κ Isotype Control	0.1 mg	MOPC-21
555899	Lysing Buffer	100 ml	(none)

Product Notices

- This reagent has been pre-diluted for use at the recommended Volume per Test. We typically use $1 \times 10^{\circ}6$ cells in a 100- μ l experimental
- An isotype control should be used at the same concentration as the antibody of interest.

BD Biosciences

bdbiosciences.com

United States 877.232.8995 888.268.5430 32.53.720.550 0120.8555.90 65.6861.0633 0800.771.7157

For country-specific contact information, visit bdbiosciences.com/how_to_order/

Conditions: The information disclosed herein is not to be construed as a recommendation to use the above product in violation of any patents. BD Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Purchase does not include or carry any right to resell or transfer this product either as a stand-alone product or as a component of another product. Any use of this product other than the permitted use without the express written authorization of Becton Dickinson and Company is strictly prohibited.
For Research Use Only. Not for use in diagnostic or therapeutic procedures. Not for resale.
BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2011 BD

- 3. Please observe the following precautions: Absorption of visible light can significantly alter the energy transfer occurring in any tandem fluorochrome conjugate; therefore, we recommend that special precautions be taken (such as wrapping vials, tubes, or racks in aluminum foil) to prevent exposure of conjugated reagents, including cells stained with those reagents, to room illumination.
- 4. BD APC-H7 is a tandem conjugate and an analog of APC-Cy7 with the same spectral properties. It has decreased intensity but it is engineered for greater stability and less spillover in the APC channel and consequently offers better performance than APC-Cy7. It has an absorption maximum of approximately 650 nm. When excited by light from a red laser, the APC fluorochrome can transfer energy to the cyanine dye, which then emits at a longer wavelength. The resulting fluorescent emission maximum is approximately 767 nm. BD recommends that a 750-nm longpass filter be used along with a red-sensitive detector such as the Hamamatsu R3896 PMT. As with APC-Cy7 special filters are required when using APC-H7 in conjunction with APC.
 - Note: Although our APC-H7 products demonstrate higher lot-to lot consistency than other APC tandem conjugate products, and every effort is made to minimize the lot-to-lot variation in residual emission from APC, it is strongly recommended that every lot be tested for differences in the amount of compensation required and that individual compensation controls are run for each APC-H7 conjugate. Note: Cy is a trademark of Amersham Biosciences Limited.
- 5. Although BD APC-H7 is engineered to minimize spillover to the APC channel and is more stable and less affected by light, temperature, and formaldehyde-based fixatives, compared to other APC-cyanine tandem dyes, it is still good practice to minimize as much as possible, any light, temperature and fixative exposure when working with all fluorescent conjugates.
- 6. Cy is a trademark of Amersham Biosciences Limited.
- Source of all serum proteins is from USDA inspected abattoirs located in the United States.
- Caution: Sodium azide yields highly toxic hydrazoic acid under acidic conditions. Dilute azide compounds in running water before discarding
 to avoid accumulation of potentially explosive deposits in plumbing.
- 9. For fluorochrome spectra and suitable instrument settings, please refer to our Fluorochrome Web Page at www.bdbiosciences.com/colors.
- 10. Please refer to www.bdbiosciences.com/pharmingen/protocols for technical protocols.

References

Bradbury LE, Goldmacher VS, Tedder TF. The CD19 signal transduction complex of B lymphocytes. Deletion of the CD19 cytoplasmic domain alters signal transduction but not complex formation with TAPA-1 and Leu 13. *J Immunol*. 1993; 151(6):2915-2927. (Biology)

Engel P, Zhou LJ, Ord DC, Sato S, Koller B, Tedder TF. Abnormal B lymphocyte development, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule. *Immunity*. 1995; 3(1):39-50. (Biology)

Favaloro EJ, Moraitis N, Koutts J, Exner T, Bradstock KF. Endothelial cells and normal circulating haemopoietic cells share a number of surface antigens. Thromb Haemost. 1989; 61(2):217-224. (Biology)

Gommerman JL, Oh DY, Zhou X, et al. A role for CD21/CD35 and CD19 in responses to acute septic peritonitis: a potential mechanism for mast cell activation. *J Immunol.* 2000; 165(12):6915-6921. (Biology)

Inaoki M, Sato S, Weintraub BC, Goodnow CC, Tedder TF. CD19-regulated signaling thresholds control peripheral tolerance and autoantibody production in B lymphocytes. *J Exp Med.* 1997; 186(11):1923-1931. (Biology)

Knapp W, Dorken B, Rieber EP, et al, ed. Leucocyte Typing IV. New York: Oxford University Press; 1989:1-1208. (Biology)

McMichael AJ, Beverly PCL, Gilks W, et al, ed. *Leukocyte Typing III: White Cell Differentiation Antigens*. New York: Oxford University Press; 1987. (Biology) Nadler LM, Anderson KC, Marti G, et al. B4, a human B lymphocyte-associated antigen expressed on normal, mitogen-activated, and malignant B lymphocytes. *J Immunol.* 1983: 131(1):244-250. (Biology)

Reinherz EL, Haynes BF, Nadler LM, Berstein ID, ed. *Leukocyte Typing II: Human B Lymphocytes*. New York: Springer-Verlag New York Inc; 1986:3-560. (Biology)

Sato S, Jansen PJ, Tedder TF. CD19 and CD22 expression reciprocally regulates tyrosine phosphorylation of Vav protein during B lymphocyte signaling. *Proc Natl Acad Sci U S A.* 1997; 94(24):13158-13162. (Biology)

Sato S, Ono N, Steeber DA, Pisetsky DS, Tedder TF. CD19 regulates B lymphocyte signaling thresholds critical for the development of B-1 lineage cells and autoimmunity. *J Immunol.* 1996; 157(10):4371-4378. (Biology)

Sato S, Steeber DA, Jansen PJ, Tedder TF. CD19 expression levels regulate B lymphocyte development: human CD19 restores normal function in mice lacking endogenous CD19. *J Immunol.* 1997; 158(10):4662-4669. (Biology)

Schlossman SF, Boumsell L, Gilks W, et al, ed. *Leukocyte Typing V: White Cell Differentiation Antigens*. New York: Oxford University Press; 1995. (Biology) Uckun FM, Muraguchi A, Ledbetter JA, et al. Biphenotypic leukemic lymphocyte precursors in CD2+CD19+ acute lymphoblastic leukemia and their putative normal counterparts in human fetal hematopoietic tissues. *Blood.* 1989; 73(4):1000-1015. (Biology)

560727 Rev. 1 Page 2 of 2