Sterile

#8230

Human Lymphotoxin- α /TNF- β /TNFSF1 (hLT- α)

SC 10 μg SF 10 μg (Carrier Free)

LC 50 μg LF 50 μg (Carrier Free)

Multi-milligram quantities available

rev. 04/24/12

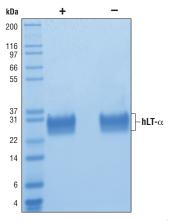
Orders 877-616-CELL (2355)

orders@cellsignal.com

Support 877-678-TECH (8324)

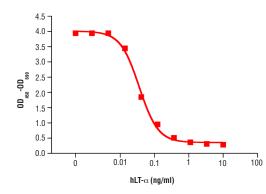
info@cellsignal.com

Web www.cellsignal.com


For Research Use Only. Not For Use In Diagnostic Procedures.

Source: Recombinant human $LT-\alpha$ (hLT- α) Pro36-Leu205 (Accession #NP_000586) was expressed in human 293 cells at Cell Signaling Technology.

Molecular Characterization: Recombinant hLT- α contains no "tags" and the nonglycosylated protein has a calculated MW of 18,548. DTT-reduced and non-reduced protein migrate as 24-31 kDa polypeptides. Lower mobility and heterogeneity in SDS-PAGE are due to glycosylation. The expected amino-terminal PGVGL of recombinant hLT- α was verified by amino acid sequencing.


Endotoxin: Less than 0.01 ng endotoxin/1 μ g hLT- α .

Purity: >98% as determined by SDS-PAGE of 6 μ g reduced (+) and non-reduced (-) recombinant hLT- α . All lots are greater than 98% pure.

The purity of recombinant $hLT-\alpha$ was determined by SDS-PAGE of 6 μ g reduced (+) and non-reduced (-) recombinant μ LT- μ and staining overnight with Coomassie Blue.

Bioactivity: The bioactivity of recombinant hLT- α was determined in an L-929 cell viability assay. The ED $_{50}$ of each lot is between 15-150 pg/ml.

The viability of L-929 cells treated with increasing amounts of hLT-α in the presence of 2 ng/ml actinomycin D was determined. After 24 hour treatment with hLT-α, cells were incubated with a tetrazolium salt and the OD₄₅₀ - OD₆₅₀ was determined. **Formulation:** With carrier: Lyophilized from a 0.22 μ m filtered solution of PBS, pH 7.2 containing 20 μ g BSA per 1 μ g hLT- α .

Carrier free: Lyophilized from a 0.22 μm filtered solution of PBS, pH 7.2.

Reconstitution:

With carrier: Add sterile PBS or PBS containing 1% bovine or human serum albumin or 5-10% FBS to a final hLT- α concentration of greater than 50 μ g/ml. Solubilize for 30 minutes at room temperature with occasional gentle vortexing.

Carrier free: Add sterile PBS or PBS containing protein to minimize absorption of hLT- α to surfaces. Solubilize for 30 minutes at room temperature with occasional gentle vortexing. Stock hLT- α should be greater than 50 μ g/ml.

Storage: Stable in lyophilized state at 4°C for 1 year after receipt. Sterile stock solutions reconstituted with carrier protein are stable at 4°C for 2 months and at -20°C for 6 months. Avoid repeated freeze-thaw cycles.

Maintain sterility. Storage at -20°C should be in a manual defrost freezer

Applications: Optimal concentration for the desired application should be determined by the user.

Background: Lymphotoxin- α (LT- α), also known as TNF- β , is a member of the TNF superfamily of proteins (1). NK cells, T cells, B cells, and lymphoid tissue-inducer cells express LT- α (1). LT- α can be secreted as a soluble homotrimer or form membrane bound heterotrimers with lymphotoxin- β (LT α 1 β 2 or LT α 2 β 1) which can be cleaved from the cell surface by matrix metalloproteases (1,2). Soluble LT- α binds to and signals through TNFR1/TNFR2, activating the canonical NF- κ B pathway (1). In contrast, LT α 1 β 2 heterodimers bind to the LT β R receptor and activate the noncanonical NF- κ B pathway (1). As a result, LT- α and TNF- α have overlapping functions. Soluble LT- α and LT α 1 β 2 play key roles in lymphangiogenesis (3). The LT α 1 β 2/LT β R axis is essential for the development of lymphoid tissue (1,3).

Background References:

- (1) Wolf, M.J. et al. (2010) Oncogene 29, 5006-18.
- (2) Young, J. et al. (2010) Cytokine 51, 78-86.
- (3) Mounzer, R.H. et al. (2010) Blood 116, 2173-82.

© 2011 Cell Signaling Technology, Inc. Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.