Applications	Reactivity	Sensitivity	MW (kDa)	Source
W	Н	Endogenous	120	Rabbit

Applications Key: W=Western Blotting

Reactivity Key: H=Human

Species cross-reactivity is determined by western blot. Species enclosed in parentheses are predicted to react based on 100% sequence homology.

Protocols

2310:

Western Immunoblotting Protocol (Primary Ab Incubation In BSA)

For Western blots, incubate membrane with diluted antibody in 5% w/v BSA, 1X TBS, 0.1% Tween-20 at 4 °C

with gentle shaking, overnight.

Products available from Cell Signaling Technology are linked by their respective catalog numbers.

A. Solutions and Reagents

NOTE: Prepare solutions with Milli-Q or equivalently purified water.

- 1. 1X Phosphate Buffered Saline (PBS).
- 1X SDS Sample Buffer: (#7722, #7723) 62.5 mM Tris-HCl (pH 6.8 at 25 °C), 2% w/v SDS, 10% glycerol, 50 mM DTT, 0.01% w/v bromophenol blue or phenol red.
- 3. Transfer Buffer: 25 mM Tris base, 0.2 M glycine, 20% methanol (pH 8.5).
- 4. **10X Tris Buffered Saline (TBS):** (#9997) To prepare 1 liter of 10X TBS: 24.2 g Tris base, 80 g NaCl; adjust pH to 7.6 with HCl (use at 1X).
- 5. Nonfat Dry Milk: (#9999) (weight to volume [w/v]).
- Blocking Buffer: 1X TBS, 0.1% Tween-20 with 5% w/v nonfat dry milk; for 150 ml, add 15 ml 10X TBS to 135 ml water, mix. Add 7.5 g nonfat dry milk and mix well. While stirring, add 0.15 ml Tween-20 (100%).
- 7. Wash Buffer: 1X TBS, 0.1% Tween-20 (TBS/T).
- 8. Bovine Serum Albumin (BSA): (#9998).
- Primary Antibody Dilution Buffer: 1X TBS, 0.1% Tween-20 with 5% BSA; for 20 ml, add 2 ml 10X TBS to 18 ml water, mix. Add 1.0 g BSA and mix well. While stirring, add 20 µl Tween-20 (100%).
- Phototope[®]-HRP Western Blot Detection System: (<u>#7071 anti-rabbit</u>) or (<u>#7072 anti-mouse</u>) Includes biotinylated protein ladder, secondary (<u>#7074 anti-rabbit</u>) or (<u>#7076 anti-mouse</u>) antibody conjugated to horseradish peroxidase (HRP), anti-biotin antibody conjugated to HRP, LumiGLO[®] chemiluminescent reagent and peroxide.
- 11. Prestained Protein Marker, Broad Range (Premixed Format): (#7720).
- 12. Biotinylated Protein Ladder Detection Pack: (#7727).
- Blotting Membrane: This protocol has been optimized for nitrocellulose membranes, which CST recommends. PVDF membranes may also be used.

B. Protein Blotting

A general protocol for sample preparation is described below.

- 1. Treat cells by adding fresh media containing regulator for desired time.
- 2. Aspirate media from cultures; wash cells with 1X PBS; aspirate.
- Lyse cells by adding 1X SDS sample buffer (100 μl per well of 6-well plate or 500 μl per plate of 10 cm diameter plate). Immediately scrape the cells off the plate and transfer the extract to a microcentrifuge tube. Keep on ice.
- 4. Sonicate for 10–15 seconds for complete cell lysis and to shear DNA (to reduce sample viscosity).
- 5. Heat a 20 µl sample to 95–100 °C for 5 minutes; cool on ice.
- 6. Microcentrifuge for 5 minutes.
- Load 20 μl onto SDS-PAGE gel (10 cm x 10 cm). NOTE: CST recommends loading prestained molecular weight markers (#7720, 10 μl/lane) to verify electrotransfer and biotinylated protein ladder (#7727, 10 μl/lane) to determine molecular weights.
- 8. Electrotransfer to nitrocellulose or PVDF membrane.

C. Membrane Blocking and Antibody Incubations

NOTE: Volumes are for $10 \text{ cm x} 10 \text{ cm} (100 \text{ cm}^2)$ of membrane; for different sized membranes, adjust volumes accordingly.

- 1. (Optional) After transfer, wash nitrocellulose membrane with 25 ml TBS for 5 minutes at room temperature.
- 2. Incubate membrane in 25 ml of blocking buffer for 1 hour at room temperature.
- 3. Wash three times for 5 minutes each with 15 ml of TBS/T.
- 4. Incubate membrane and primary antibody (at the appropriate dilution) in 10 ml primary antibody dilution buffer with gentle agitation <u>overnight</u> at 4 °C.
- 5. Wash three times for 5 minutes each with 15 ml of TBS/T.

I. For Unconjugated Primary Antibodies

- Incubate membrane with appropriate HRP-conjugated secondary antibody (1:2000) and HRP-conjugated anti-biotin antibody (1:1000) to detect biotinylated protein markers in 10 ml of blocking buffer with gentle agitation for 1 hour at room temperature.
- 2. Wash three times for 5 minutes each with 15 ml of TBS/T.

II. For HRP Conjugated Primary Antibodies

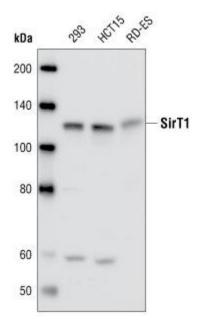
Skip to Detection of Proteins (Step D).

III. For Biotinylated Primary Antibodies

- 1. Incubate membrane with HRP-Streptavidin (at the appropriate dilution) in milk for one hour with gentle agitation at room temperature.
- 2. Wash three times for 5 minutes each with 15 ml of TBS/T.

D. Detection of Proteins

 Incubate membrane with 10 ml LumiGLO[®] (0.5 ml 20X LumiGLO[®], 0.5 ml 20X Peroxide and 9.0 ml Milli-Q water) with gentle agitation for 1 minute at room temperature. NOTE: LumiGLO[®] substrate can be further diluted if signal response is too fast. Drain membrane of excess developing solution (do not let dry), wrap in plastic wrap and expose to x-ray film. An initial 10-second exposure should indicate the proper exposure time. NOTE: Due to the kinetics of the detection reaction, signal is most intense immediately following LumiGLO[®] incubation and declines over the following 2 hours.


Specificity / Sensitivity

SirT1 antibody detects endogenous levels of total SirT1 protein. The antibody does not cross-react with other sirtuin proteins.

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the carboxy terminus of human SirT1. Antibodies are purified by protein A and peptide affinity chromatography.

Western Blotting

Western blot analysis of lysates from 293, HCT15 and RD-ES cells, using SirT1 Antibody.

Background

The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as class III histone deacetylases. The first discovered and best characterized of these genes is *Saccharomyces cerevisiae* SIR2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT1, the mammalian ortholog of Sir2, is a nuclear protein implicated in the regulation of many cellular processes, including apoptosis, cellular senescence, endocrine signaling, glucose homeostasis, aging, and longevity. Targets of SirT1 include acetylated p53 (2,3), p300 (4), Ku70 (5), forkhead (FoxO) transcription factors (5,6), PPAR γ (7), and the PPAR γ coactivator-1 α (PGC-1 α) protein (8). Deacetylation of p53 and FoxO transcription factors represses apoptosis and increases cell survival (2,3,5,6). Deacetylation of PPAR γ and PGC-1 α regulates the gluconeogenic/glycolytic pathways in the liver and fat mobilization in white adipocytes in response to fasting (7,8). SirT1 deacetylase activity is inhibited by nicotinamide and activated by resveratrol. In addition, SirT1 activity may be regulated by phosphorylation, as it is phosphorylated at Ser27 and Ser47 *in vivo*; however, the function of these phosphorylation sites has not yet been determined (9).

- 1. Guarente, L. (1999) Nat. Genet. 23, 281-285.
- 2. Vaziri, H. et al. (2001) Cell 107, 149-159.
- 3. Luo, J. et al. (2001) *Cell* 107, 137-148.
- 4. Bouras, T. et al. (2005) J. Biol. Chem. 280, 10264-10276.
- 5. Brunet, A. et al. (2004) *Science* 303, 2011-2015.
- 6. Motta, M.C. et al. (2004) *Cell* 116, 551-563.
- 7. Picard, F. et al. (2004) *Nature* 429, 771-776.
- 8. Rodgers, J.T. et al. (2005) *Nature* 434, 113-118.
- 9. Beausoleil, S.A. et al. (2004) Proc. Natl. Acad. Sci. USA 101, 12130-12135.

Application References

- Morales-Alamo, D. et al. (2012) J Appl Physiol 113, 917-28. Applications: Western Blotting
- Morales-Alamo, D. et al. (2013) J Appl Physiol 114, 566-77. Applications: Western Blotting