Applications	Reactivity	Sensitivity	MW (kDa)	Source
W	H M R	Endogenous	48	Rabbit

Applications Key: W=Western Blotting

Reactivity Key: H=Human M=Mouse R=Rat

Species cross-reactivity is determined by western blot. Species enclosed in parentheses are predicted to react based on 100% sequence homology.

Protocols

2303:

Western Immunoblotting Protocol (Primary Ab Incubation In BSA)

For Western blots, incubate membrane with diluted antibody in 5% w/v BSA, 1X TBS, 0.1% Tween-20 at 4 $^{\circ}{\rm C}$

with gentle shaking, overnight.

Products available from Cell Signaling Technology are linked by their respective catalog numbers.

A. Solutions and Reagents

NOTE: Prepare solutions with Milli-Q or equivalently purified water.

- 1. 1X Phosphate Buffered Saline (PBS).
- 1X SDS Sample Buffer: (#7722, #7723) 62.5 mM Tris-HCl (pH 6.8 at 25 °C), 2% w/v SDS, 10% glycerol, 50 mM DTT, 0.01% w/v bromophenol blue or phenol red.
- 3. Transfer Buffer: 25 mM Tris base, 0.2 M glycine, 20% methanol (pH 8.5).
- 4. **10X Tris Buffered Saline (TBS):** (#9997) To prepare 1 liter of 10X TBS: 24.2 g Tris base, 80 g NaCl; adjust pH to 7.6 with HCl (use at 1X).
- 5. Nonfat Dry Milk: (#9999) (weight to volume [w/v]).
- Blocking Buffer: 1X TBS, 0.1% Tween-20 with 5% w/v nonfat dry milk; for 150 ml, add 15 ml 10X TBS to 135 ml water, mix. Add 7.5 g nonfat dry milk and mix well. While stirring, add 0.15 ml Tween-20 (100%).
- 7. Wash Buffer: 1X TBS, 0.1% Tween-20 (TBS/T).
- 8. Bovine Serum Albumin (BSA): (#9998).
- Primary Antibody Dilution Buffer: 1X TBS, 0.1% Tween-20 with 5% BSA; for 20 ml, add 2 ml 10X TBS to 18 ml water, mix. Add 1.0 g BSA and mix well. While stirring, add 20 µl Tween-20 (100%).
- Phototope[®]-HRP Western Blot Detection System: (<u>#7071 anti-rabbit</u>) or (<u>#7072 anti-mouse</u>) Includes biotinylated protein ladder, secondary (<u>#7074 anti-rabbit</u>) or (<u>#7076 anti-mouse</u>) antibody conjugated to horseradish peroxidase (HRP), anti-biotin antibody conjugated to HRP, LumiGLO[®] chemiluminescent reagent and peroxide.
- 11. Prestained Protein Marker, Broad Range (Premixed Format): (#7720).
- 12. Biotinylated Protein Ladder Detection Pack: (#7727).
- Blotting Membrane: This protocol has been optimized for nitrocellulose membranes, which CST recommends. PVDF membranes may also be used.

B. Protein Blotting

A general protocol for sample preparation is described below.

- 1. Treat cells by adding fresh media containing regulator for desired time.
- 2. Aspirate media from cultures; wash cells with 1X PBS; aspirate.
- Lyse cells by adding 1X SDS sample buffer (100 μl per well of 6-well plate or 500 μl per plate of 10 cm diameter plate).
 Immediately scrape the cells off the plate and transfer the extract to a microcentrifuge tube. Keep on ice.
- 4. Sonicate for 10–15 seconds for complete cell lysis and to shear DNA (to reduce sample viscosity).
- 5. Heat a 20 µl sample to 95–100 °C for 5 minutes; cool on ice.
- 6. Microcentrifuge for 5 minutes.
- Load 20 μl onto SDS-PAGE gel (10 cm x 10 cm). NOTE: CST recommends loading prestained molecular weight markers (#7720, 10 μl/lane) to verify electrotransfer and biotinylated protein ladder (#7727, 10 μl/lane) to determine molecular weights.
- 8. Electrotransfer to nitrocellulose or PVDF membrane.

C. Membrane Blocking and Antibody Incubations

NOTE: Volumes are for $10 \text{ cm x} 10 \text{ cm} (100 \text{ cm}^2)$ of membrane; for different sized membranes, adjust volumes accordingly.

- 1. (Optional) After transfer, wash nitrocellulose membrane with 25 ml TBS for 5 minutes at room temperature.
- 2. Incubate membrane in 25 ml of blocking buffer for 1 hour at room temperature.
- 3. Wash three times for 5 minutes each with 15 ml of TBS/T.
- 4. Incubate membrane and primary antibody (at the appropriate dilution) in 10 ml primary antibody dilution buffer with gentle agitation <u>overnight</u> at 4 °C.
- 5. Wash three times for 5 minutes each with 15 ml of TBS/T.

I. For Unconjugated Primary Antibodies

- Incubate membrane with appropriate HRP-conjugated secondary antibody (1:2000) and HRP-conjugated anti-biotin antibody (1:1000) to detect biotinylated protein markers in 10 ml of blocking buffer with gentle agitation for 1 hour at room temperature.
- 2. Wash three times for 5 minutes each with 15 ml of TBS/T.

II. For HRP Conjugated Primary Antibodies

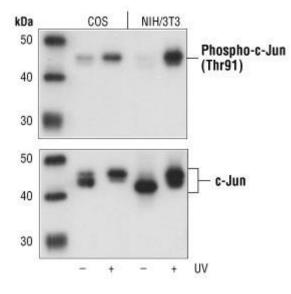
Skip to Detection of Proteins (Step D).

III. For Biotinylated Primary Antibodies

- 1. Incubate membrane with HRP-Streptavidin (at the appropriate dilution) in milk for one hour with gentle agitation at room temperature.
- 2. Wash three times for 5 minutes each with 15 ml of TBS/T.

D. Detection of Proteins

 Incubate membrane with 10 ml LumiGLO[®] (0.5 ml 20X LumiGLO[®], 0.5 ml 20X Peroxide and 9.0 ml Milli-Q water) with gentle agitation for 1 minute at room temperature. NOTE: LumiGLO[®] substrate can be further diluted if signal response is too fast. Drain membrane of excess developing solution (do not let dry), wrap in plastic wrap and expose to x-ray film. An initial 10-second exposure should indicate the proper exposure time. NOTE: Due to the kinetics of the detection reaction, signal is most intense immediately following LumiGLO[®] incubation and declines over the following 2 hours.


Specificity / Sensitivity

Phospho-c-Jun (Thr91) Antibody detects endogenous levels of total c-Jun protein only when phosphorylated at threonine 91.

Source / Purification

Polyclonal antibodies are produced by immunizing animals with a synthetic phosphopeptide corresponding to residues around Thr91 of human c-Jun. Antibodies are purified by protein A and peptide affinity chromatography.

Western Blotting

Western blot analysis of extracts from untreated or UV-treated COS and NIH/3T3 cells, using Phospho-c-Jun (Thr91) Antibody (upper) or c-Jun (60A8) Rabbit mAb #9165 (lower).

Background

c-Jun is a member of the Jun family containing c-Jun, JunB, and JunD, and is a component of the transcription factor activator protein-1 (AP-1). AP-1 is composed of dimers of Fos, Jun, and ATF family members and binds to and activates transcription at TRE/AP-1 elements (reviewed in 1). Extracellular signals including growth factors, chemokines, and stress activate AP-1-dependent transcription. The transcriptional activity of c-Jun is regulated by phosphorylation at Ser63 and Ser73 through SAPK/JNK (reviewed in 2). Knock-out studies in mice have shown that c-Jun is essential for embryogenesis (3), and subsequent studies have demonstrated roles for c-Jun in various tissues and developmental processes including axon regeneration (4), liver regeneration (5), and T cell development (6). AP-1 regulated genes exert diverse biological functions including cell proliferation, differentiation, and apoptosis, as well as transformation, invasion and metastasis, depending on cell type and context (7-9). Other target genes regulate survival, as well as hypoxia and angiogenesis (8,10). Research studies have implicated c-Jun as a promising therapeutic target for cancer, vascular remodeling, acute inflammation, and rheumatoid arthritis (11,12). The multisite phosphorylation of the transcription factor c-Jun has been reinvestigated recently (14). The phosphorylation of Thr91 and Thr93 induces a change in the conformation of c-Jun that enhances accessibility of the carboxy-terminal sites to a protein phosphatase(s) (15). The identity of the protein kinase that phosphorylates Thr91 and Thr93 *in vivo* is unknown.

- 1. Jochum, W. et al. (2001) Oncogene 20, 2401-12.
- 2. Davis, R.J. (2000) Cell 103, 239-52.
- 3. Hilberg, F. et al. (1993) *Nature* 365, 179-81.
- 4. Raivich, G. et al. (2004) Neuron 43, 57-67.
- 5. Behrens, A. et al. (2002) *EMBO J* 21, 1782-90.
- 6. Riera-Sans, L. and Behrens, A. (2007) J Immunol 178, 5690-700.
- 7. Lepp ä, S. and Bohmann, D. (1999) Oncogene 18, 6158-62.
- 8. Shaulian, E. and Karin, M. (2002) Nat Cell Biol 4, E131-6.
- 9. Weiss, C. and Bohmann, D. (2004) Cell Cycle 3, 111-3.
- 10. Karamouzis, M.V. et al. (2007) Mol Cancer Res 5, 109-20.
- 11. Kim, S. and Iwao, H. (2003) J Pharmacol Sci 91, 177-81.
- 12. Dass, C.R. and Choong, P.F. (2008) Pharmazie 63, 411-4.
- 13. Morton, S. et al. (2003) EMBO J 22, 3876-86.
- 14. Papavassiliou, A.G. et al. (1995) *EMBO J* 14, 2014-9.