

# Anti-Human HLA-DR eFluor® 605NC

Catalog Number: 93-9956 RUO: For Research Use Only. Not for use in diagnostic procedures.



Staining of normal human peripheral blood cells with Mouse IgG2b K Isotype Control eFluor® 605NC (cat. 53-4732) (blue) or Anti-Human HLA-DR eFluor® 605NC (purple). Cells in the lymphocyte gate were used for analysis.

## **Product Information**

Contents: Anti-Human HLA-DR eFluor® 605NC REF Catalog Number: 93-9956 Clone: LN3 Concentration: 5 uL Host/Isotype: Mouse IgG2b, kappa Formulation: aqueous buffer, 0.09% sodium azide, may contain carrier protein/stabilizer

Temperature Limitation: Store at 2-8°C. Light sensitive material. This product is guaranteed for 6 months upon receipt when stored properly.
Batch Code: Refer to Vial

- Use By: Refer to Vial
- 🔨 Caution, contains Azide

### Description

The LN3 mAb reacts with the human major histocompatibility complex (MHC) class II, HLA-DR. HLA-DR is expressed on the surface of human antigen presenting cells (APC) including B cells, monocytes, macrophages, DCs, and activated T cells. HLA-DR is a heterodimeric transmembrane protein composed of  $\alpha$  and  $\beta$  subunits and plays an important role in the presentation of peptides to CD4<sup>+</sup> T lymphocytes.

### **Applications Reported**

This LN3 antibody has been reported for use in flow cytometric analysis.

### **Applications Tested**

This LN3 antibody has been pre-titrated and tested by flow cytometric analysis of normal human peripheral blood cells. This can be used at 5  $\mu$ L per test. A test is defined as the amount of antibody that will stain a cell sample in a final volume of 100  $\mu$ L. Cell number should be determined empirically but can range from 10<sup>5</sup> to 10<sup>8</sup> cells/test.

The Mouse IgG2b Isotype Control eFluor 605NC (cat. 93-4732) should be used at 5 uL/test.

Laser/Filter Recommendation: When using eFluor 605NC, we recommend excitation with the 405nm violet laser with an appropriate filter set, such as the 595LP dichroic mirror with the 605/40 bandpass filter. An acceptable alternative is the 610/20 bandpass filter. For instruments not equipped with a violet laser, the eFluor 605NC is also excited by the 488 nm blue laser and can be used as a PE-Texas Red alternative.

**Fixation Recommendation:** When fixing samples that have been stained with nanocrystal reagents, we recommend keeping the total volume at approximately 200 µL of IC Fixation Buffer (cat. 00-8222) and the exposure time 30-60 minutes to preserve the optimal fluorescent signal from the nanocrystal reagent.

For answers about fixation and other questions, please refer to Nanocrystal Frequently Asked Questions or contact eBioscience Technical Support.

### References

Fullen, D. R. and J. T. Headington. 1998. Factor XIIIa-positive dermal dendritic cells and HLA-DR expression in radial versus vertical growthphase melanomas. J Cutan Pathol. 25(10): 553-8.

Hua, Z. X., K. E. Tanaka, et al. 1998. Immunoreactivity for LN2 and LN3 distinguishes small cell carcinomas from non-small cell carcinomas in the lung. Hum Pathol. 29(12): 1441-6.

loachim, H. L., S. E. Pambuccian, et al. 1996. Lymphoid monoclonal antibodies reactive with lung tumors. Diagnostic applications. Am J Surg Pathol. 20(1): 64-71.

Davey, F. R., S. Olson, et al. 1988. The immunophenotyping of extramedullary myeloid cell tumors in paraffin-embedded tissue sections. Am J Surg Pathol. 12(9): 699-707.

Norton, A. J. and P. G. Isaacson. 1987. Detailed phenotypic analysis of B-cell lymphoma using a panel of antibodies reactive in routinely fixed wax-embedded tissue. Am J Pathol. 128(2): 225-40.

### **Related Products**

00-4222 Flow Cytometry Staining Buffer 53-4732 Mouse IgG2b K Isotype Control Alexa Fluor® 488

#### Legal

Under patent number: US 7,939,170 and additional pending patent application(s)

Not for further distribution without written consent. Copyright © 2000-2012 eBioscience, Inc. Tel: 888.999.1371 or 858.642.2058 • Fax: 858.642.2046 • www.eBioscience.com • info@eBioscience.com