## TriDye<sup>™</sup> 1 kb **DNA Ladder**







## N3272S

125 gel lanes (1.25 ml) Lot: 0101209

50 µg/ml

Store at 4°C Exp: 9/14

**Description:** TriDye<sup>™</sup> 1 kb DNA Ladder is a pre-mixed, ready-to-load molecular weight marker containing 3 dyes which serve as visual aids to monitor the progress of migration during agarose gel electrophoresis.

The DNA Ladder consists of proprietary plasmids which are digested to completion with appropriate

> More Lanes, Same Price Ready-to-load, Stable at 25°C

restriction enzymes to yield 10 bands suitable for use as molecular weight standards for agarose gel electrophoresis. The digested DNA includes fragments ranging from 0.5-10.0 kilobases. The 3.0 kb fragment has increased intensity to serve as a reference band.

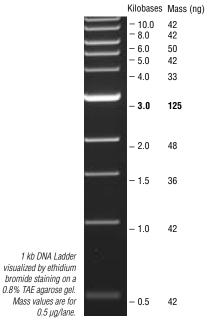
Supplied in: 0.006% xylene cyanol FF, 0.006% bromophenol blue, 0.06% orange G, 10% glycerol, 10 mM Tris-HCI (pH 7.9) and 10 mM EDTA.

### TriDye During Electrophoresis



-xylene cyanol FF

-bromophenol blue


- orange G

On a standard 1% agarose gel in 1X TBE, xylene cyanol FF migrates at approximately 4 kb, bromophenol blue at approximately 300 bp and the orange G at approximately 50 bp. As the percentage of agarose changes, the migration rates of the dyes relative to migration rates of the DNA will change.

## TriDye Relative Migration Rates (approximate)

| % agarose | arose xylene cyanol FF bromophenol blue |          | orange G |
|-----------|-----------------------------------------|----------|----------|
| 0.5       | 20–40 kb                                | 4,000 bp | 150 bp   |
| 0.8       | 8,000 bp                                | 400 bp   | 75 bp    |
| 1.0       | 4,000 bp                                | 300 bp   | 50 bp    |
| 1.3       | 1,800 bp                                | 150 bp   | 15 bp    |
| 1.5       | 1,200 bp                                | 100 bp   | 10 bp    |
| 2.0       | 700 bp                                  | 65 bp    | < 10 bp  |

Usage Recommendation: We recommend loading 10 µl (0.5 µg) of TriDye 1 kb DNA Ladder per gel lane. The TriDye 1 kb DNA Ladder was not designed for precise quantification of DNA mass but can be used for approximating the mass of DNA in comparably intense samples of similar size. The approximate mass of DNA in each of the bands in our TriDye 1 kb DNA Ladder is indicated assuming a 10 µl (0.5 µg) load:



(see other side)

#### CERTIFICATE OF ANALYSIS

## TriDye<sup>™</sup> 1 kb **DNA Ladder**



1-800-632-7799 info@neb.com www.neb.com

# N3272S

125 gel lanes (1.25 ml) Lot: 0101209

50 µg/ml

Store at 4°C Exp: 9/14

**Description:** TriDye <sup>™</sup> 1 kb DNA Ladder is a pre-mixed, ready-to-load molecular weight marker containing 3 dyes which serve as visual aids to monitor the progress of migration during agarose gel electrophoresis.

The DNA Ladder consists of proprietary plasmids which are digested to completion with appropriate

> More Lanes, Same Price Ready-to-load, Stable at 25°C

restriction enzymes to yield 10 bands suitable for use as molecular weight standards for agarose gel electrophoresis. The digested DNA includes fragments ranging from 0.5-10.0 kilobases. The 3.0 kb fragment has increased intensity to serve as a reference band.

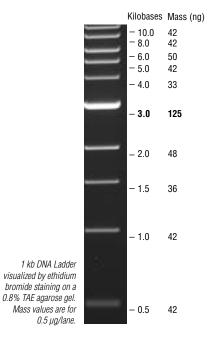
Supplied in: 0.006% xylene cyanol FF, 0.006% bromophenol blue, 0.06% orange G, 10% glycerol, 10 mM Tris-HCI (pH 7.9) and 10 mM EDTA.

## TriDye During Electrophoresis



-xylene cyanol FF

-bromophenol blue


- orange G

On a standard 1% agarose gel in 1X TBE, xvlene cvanol FF migrates at approximately 4 kb, bromophenol blue at approximately 300 bp and the orange G at approximately 50 bp. As the percentage of agarose changes, the migration rates of the dyes relative to migration rates of the DNA will change.

### TriDye Relative Migration Rates (approximate)

| % agarose | xylene cyanol FF | bromophenol blue | orange G |
|-----------|------------------|------------------|----------|
| 0.5       | 20–40 kb         | 4,000 bp         | 150 bp   |
| 0.8       | 8,000 bp         | 400 bp           | 75 bp    |
| 1.0       | 4,000 bp         | 300 bp           | 50 bp    |
| 1.3       | 1,800 bp         | 150 bp           | 15 bp    |
| 1.5       | 1,200 bp         | 100 bp           | 10 bp    |
| 2.0       | 700 bp           | 65 bp            | < 10 bp  |

Usage Recommendation: We recommend loading 10 µl (0.5 µg) of TriDye 1 kb DNA Ladder per gel lane. The TriDye 1 kb DNA Ladder was not designed for precise quantification of DNA mass but can be used for approximating the mass of DNA in comparably intense samples of similar size. The approximate mass of DNA in each of the bands in our TriDye 1 kb DNA Ladder is indicated assuming a 10 µl (0.5 µg) load:



(see other side)

| Fragment | Base Pairs | DNA Mass                                                                                      | Preparation of DNA: The double-stranded DNA                                                                                                                                                             |
|----------|------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 10,002     | 42 ng                                                                                         | is digested to completion with appropriate                                                                                                                                                              |
| 2        | 8,001      | 42 ng                                                                                         | restriction enzymes, phenol extracted and                                                                                                                                                               |
| 3        | 6,001      | 50 ng                                                                                         | equilibrated in storage buffer.                                                                                                                                                                         |
| 4        | 5,001      | 42 ng                                                                                         | <b>Notes:</b> TriDye 1 kb DNA Ladder is stable for at least 6 months at 25°C.                                                                                                                           |
| 5        | 4,001      | 33 ng                                                                                         |                                                                                                                                                                                                         |
| 6        | 3,001      | 125 ng                                                                                        |                                                                                                                                                                                                         |
| 7        | 2,000      | 48 ng                                                                                         |                                                                                                                                                                                                         |
| 8        | 1,500      | 36 ng                                                                                         | For long term storage, store at 4°C or -20°C. If                                                                                                                                                        |
| 9        | 1,000      | 42 ng                                                                                         | stored at -20°C, mix well after thawing.                                                                                                                                                                |
| 10a      | 517 🥿      | 517 > 42 ng <b>Reference</b> : Sa<br>Maniatis, T. (1<br><i>Laboratory Ma</i><br>Cold Spring H | otorou at 20 o, mix won after thanning.                                                                                                                                                                 |
| 10b 50   | 500        |                                                                                               | Reference: Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). <i>Molecular Cloning: A Laboratory Manual</i> , (2nd ed.), (pp. 10.51–10.67). Cold Spring Harbor: Cold Spring Harbor Laboratory Press. |

Page 2 (N3272)

| Fragment | Base Pairs | DNA Mass | Preparation of DNA: The double-stranded DNA                                                                                                                                                                                                   |
|----------|------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | 10,002     | 42 ng    | is digested to completion with appropriate                                                                                                                                                                                                    |
| 2        | 8,001      | 42 ng    | restriction enzymes, phenol extracted and equilibrated in storage buffer.  Notes:  TriDye 1 kb DNA Ladder is stable for at least 6 months at 25°C.  For long term storage, store at 4°C or –20°C. If stored at –20°C, mix well after thawing. |
| 3        | 6,001      | 50 ng    |                                                                                                                                                                                                                                               |
| 4        | 5,001      | 42 ng    |                                                                                                                                                                                                                                               |
| 5        | 4,001      | 33 ng    |                                                                                                                                                                                                                                               |
| 6        | 3,001      | 125 ng   |                                                                                                                                                                                                                                               |
| 7        | 2,000      | 48 ng    |                                                                                                                                                                                                                                               |
| 8        | 1,500      | 36 ng    |                                                                                                                                                                                                                                               |
| 9        | 1,000      | 42 ng    |                                                                                                                                                                                                                                               |
| 10a      | 517 👡      | ,        |                                                                                                                                                                                                                                               |
| 10b      | 500        | 42 ng    | Reference: Sambrook, J., Fritsch, E. F. and Maniatis, T. (1989). <i>Molecular Cloning: A Laboratory Manual</i> , (2nd ed.), (pp. 10.51–10.67). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.                                       |