



## N3032S

50 gel lanes (50 µg) Lot: 1531204 Exp: 4/14 1,000 µg/ml Store at -20°C

10

BioLabs

1-800-632-7799

info@neb.com www.neb.com

10

BioLabs

info@neb.com www.neb.com

1.5 ml Gel Loading

Dye, Blue (6X) Store at 25°C

Description: The Mspl digest of pBR322 DNA vields 26 fragments.

Supplied in: 10 mM Tris-HCl (pH 8.0), 1 mM EDTA.

**Reagents supplied:** 6X Gel Loading Dye, Blue

### pBR322 DNA-**MspI Digest**



# N3032S

50 gel lanes (50 µg) Lot: 1531204 Exp: 4/14 1,000 µg/ml Store at -20°C

Store at 25°C

1.5 ml Gel Loading

Dye, Blue (6X)

**Description:** The Mspl digest of pBR322 DNA yields 26 fragments.

Supplied in: 10 mM Tris-HCl (pH 8.0), 1 mM EDTA.

**Reagents supplied:** 6X Gel Loading Dye, Blue

1X Gel Loading Dye, Blue: 2.5% Ficoll-400 11 mM EDTA 3.3 mM Tris-HCI (pH 8.0@25°C) 0.017% SDS 0.015% bromophenol blue 1-800-632-7799

1X Gel Loading Dve. Blue:

3.3 mM Tris-HCI (pH 8.0@25°C)

Preparation: Prepared from E. coli ER2420

(dam<sup>+</sup> dcm<sup>+</sup> EcoKM<sup>-</sup>) by a standard plasmid purification procedure, the double-stranded DNA

is digested to completion with Mspl, phenol

extracted and equilibrated to 10 mM Tris-HCI

Usage Recommendation: The approximate

mass of DNA in each of the bands in our

pBR322 DNA- Mspl Digest is as follows

0.015% bromophenol blue

(pH 8.0) and 1 mM EDTA.

(assuming a 1.0 µg loading):

2.5% Ficoll-400

11 mM FDTA

0.017% SDS

Preparation: Prepared from E. coli ER2420 (dam<sup>+</sup> dcm<sup>+</sup> EcoKM<sup>-</sup>) by a standard plasmid purification procedure, the double-stranded DNA is digested to completion with Mspl, phenol extracted and equilibrated to 10 mM Tris-HCI (pH 8.0) and 1 mM EDTA.

Usage Recommendation: The approximate mass of DNA in each of the bands in our pBR322 DNA- Mspl Digest is as follows (assuming a 1.0 µg loading):



|        | Fragment | Base Pairs | DNA Mass |
|--------|----------|------------|----------|
|        | 1        | 622        | 143 ng   |
|        | 2        | 527        | 121 ng   |
|        | 3        | 404        | 93 ng    |
|        | 4        | 307        | 70 ng    |
|        | 5        | 242        | 55 ng    |
|        | 6        | 238        | 55 ng    |
|        | 7        | 217        | 50 ng    |
|        | 8        | 201        | 46 ng    |
|        | 9        | 190        | 44 ng    |
|        | 10       | 180        | 41 ng    |
|        | 11, 12   | 160        | 74 ng    |
|        | 13, 14   | 147        | 68 ng    |
|        | 15       | 123        | 28 ng    |
|        | 16       | 110        | 25 ng    |
| Diaest | 17       | 90         | 21 ng    |
| Im     | 18       | 76         | 17 ng    |
| 8%     | 19       | 67         | 15 ng    |
| 070    | 20, 21   | 34         | 16 ng    |
|        | 22, 23   | 26         | 12 ng    |
|        | 24       | 15         | 3 ng     |
|        | 25, 26   | 9          | 4 ng     |
|        |          |            |          |

(see other side)

#### CERTIFICATE OF ANALYSIS

| Raca Daire                  | Fragment | Base Pairs | DNA Mass |
|-----------------------------|----------|------------|----------|
| 622                         | 1        | 622        | 143 ng   |
| 527 -                       | 2        | 527        | 121 ng   |
|                             | 3        | 404        | 93 ng    |
| 404 —                       | 4        | 307        | 70 ng    |
| 307 —                       | 5        | 242        | 55 ng    |
|                             | 6        | 238        | 55 ng    |
| 238 + 242 -                 | 7        | 217        | 50 ng    |
|                             | 8        | 201        | 46 ng    |
| 180 —                       | 9        | 190        | 44 ng    |
| 160 + 160 —<br>147 + 147 —  | 10       | 180        | 41 ng    |
| 100                         | 11, 12   | 160        | 74 ng    |
| 123 —                       | 13, 14   | 147        | 68 ng    |
|                             | 15       | 123        | 28 ng    |
| 90 —                        | 16       | 110        | 25 ng    |
| 76 – nBB322 DNA-MshI Digest | 17       | 90         | 21 ng    |
| 67 – pbhotz bhv high bigot  | 18       | 76         | 17 ng    |
| hromide staining 1.8%       | 19       | 67         | 15 ng    |
| anarose nel                 | 20, 21   | 34         | 16 ng    |
| agarose ger                 | 22, 23   | 26         | 12 ng    |
|                             | 24       | 15         | 3 ng     |
|                             | 25, 26   | 9          | 4 ng     |

(see other side)

**Note:** For long term storage store at -20°C. If samples need to be diluted, use TE or other buffer of minimal ionic strength. DNA may denature if diluted in dH<sub>2</sub>O.

#### Suggested protocol for loading a sample:

The following protocol is recommended for a 5 mm wide lane.

1. Prepare loading mixture:

| Distilled water     | 4 µl |
|---------------------|------|
| 6X Blue Loading Dye | 1 µl |
| DNA Ladder          | 1 µl |
| Total volume        | 6 µl |

- 2. Mix gently
- 3. Load onto the agarose gel

**Note:** The components of the mixture should be scaled up or down, depending on the width of the agarose gel.

Page 2 (N3032)

**Note:** For long term storage store at  $-20^{\circ}$ C. If samples need to be diluted, use TE or other buffer of minimal ionic strength. DNA may denature if diluted in dH<sub>2</sub>O.

#### Suggested protocol for loading a sample:

The following protocol is recommended for a 5 mm wide lane.

1. Prepare loading mixture:

| Distilled water     | 4 µl |
|---------------------|------|
| 6X Blue Loading Dye | 1 µI |
| DNA Ladder          | 1 µl |
| Total volume        | 6 µl |
|                     |      |

- 2. Mix gently
- 3. Load onto the agarose gel

**Note:** The components of the mixture should be scaled up or down, depending on the width of the agarose gel.

#### **References:**

References:

1. Sutcliffe, J. G. (1978) Cold Spring Harbor

2. Peden, K. W. C. (1983) Gene, 22, 277-280.

Symp. Quant. Bio. 43,77–90.

- 1. Sutcliffe, J. G. (1978) Cold Spring Harbor Symp. Quant. Bio. 43,77–90.
- 2. Peden, K. W. C. (1983) Gene, 22, 277-280.