φX174 DNA-HaeIII Digest

1-800-632-7799 in fo@neb.com www.neb.com

N3026S

50 gel lanes (50 μg) Lot: 2381209 1,000 μg/ml Store at -20°C Exp: 9/14

1.5 ml Gel Loading

Dye, Blue (6X) Store at 25°C

Description: The HaellI Digest of $\phi X174$ yields 11 fragments suitable for use as molecular weight standards for agarose gel electrophoresis (1).

Supplied in: 10 mM Tris-HCl (pH 8.0) and 1 mM EDTA.

Reagents supplied:

6X Gel Loading Dye, Blue

1X Gel Loading Dye, Blue:

2.5% FicoII-400 11 mM EDTA 3.3 mM Tris-HCI (pH 8.0@25°C) 0.017% SDS 0.015% bromophenol blue

Source: Prepared from \$\phi\$X174 am3 cs70. The double-stranded DNA is digested to completion with HaeIII, phenol extracted and equilibrated to 10 mM Tris-HCI (pH 8.0) and 1 mM EDTA.

Usage Recommendation: The approximate mass of DNA in each of the bands in our φX174 DNA-HaeIII Digest is as follows (assuming a 1.0 μg loading):

Fragment	Base Pairs	Daltons
1	1,353	251 ng
2	1,078	200 ng
3	872	162 ng
4	603	112 ng
5	310	58 ng
6b	281	52 ng
6a	271	50 ng
7	234	43 ng
8	194	36 ng
9	118	22 ng
10	72	13 ng

Base Pairs 1,353 — 1,078 — 872 — 603 — 310 — 281 > 271 — 234 — 194 — 118 — 72 — \$\delta \text{X174 DNA-HaeIII Digest} \text{visualized by ethidium bromide} \text{staining, 1.7% agarose gel.}

Note: For long term storage, store at -20° C. If samples need to be diluted, use TE or other buffer of minimal ionic strength. DNA may denature if diluted in dH₂O.

Suggested protocol for loading a sample:

The following protocol is recommended for a 5 mm wide lane.

1. Prepare loading mixture:

Distilled water	4 µl
6X Blue Loading Dye	1 µl
DNA Ladder	1 µl
Total volume	6 ul

- 2. Mix gently
- 3. Load onto the agarose gel

Note: The components of the mixture should be scaled up or down, depending on the width of the agarose gel.

References:

- 1. Fuchs, C. et al. (1978) *Gene* 4, 1–23.
- Forster, A. C. et al. (1985) Nucl. Acids Res. 13, 745–761.

CERTIFICATE OF ANALYSIS

φX174 DNA-HaeIII Digest

Dye, Blue (6X) Store at 25°C

N3026S

1,000 µg/ml

50 gel lanes (50 μg)

1.5 ml Gel Loading

1-800-632-7799 info@neb.com www.neb.com

Lot: 2381209

Store at -20°C Exp: 9/14

1X Gel Loading Dye, Blue:

2.5% Ficoll-400 11 mM EDTA 3.3 mM Tris-HCl (pH 8.0@25°C) 0.017% SDS 0.015% bromophenol blue

Source: Prepared from \$\phi\$X174 am3 cs70. The double-stranded DNA is digested to completion with HaeIII, phenol extracted and equilibrated to 10 mM Tris-HCI (pH 8.0) and 1 mM EDTA.

Usage Recommendation: The approximate mass of DNA in each of the bands in our φX174 DNA-HaelII Digest is as follows (assuming a 1.0 μg loading):

Fragment	Base Pairs	Daltons
1	1,353	251 ng
2	1,078	200 ng
3	872	162 ng
4	603	112 ng
5	310	58 ng
6b	281	52 ng
6a	271	50 ng
7	234	43 ng
8	194	36 ng
9	118	22 ng
10	72	13 ng

Base Pairs

1,353 —

1,078 —

872 —

603 —

310 —

281 >

271 >

234 —

194 —

118 —

72 —

\$\text{\$\exitt{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\$\text{\$\text{\$\}\$}\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\te

Note: For long term storage, store at -20° C. If samples need to be diluted, use TE or other buffer of minimal ionic strength. DNA may denature if diluted in dH₂O.

Suggested protocol for loading a sample:

The following protocol is recommended for a 5 mm wide lane.

1. Prepare loading mixture:

Distilled water	4 µl
6X Blue Loading Dye	1 µl
DNA Ladder	1 µl
Total volume	-6 μI

- 2. Mix gently
- 3. Load onto the agarose gel

Note: The components of the mixture should be scaled up or down, depending on the width of the agarose gel.

References:

- 1. Fuchs, C. et al. (1978) Gene 4, 1-23.
- 2. Forster, A. C. et al. (1985) *Nucl. Acids Res.* 13, 745–761.

fragments suitable for use as molecular weight standards for agarose gel electrophoresis (1).

Description: The HaellI Digest of $\phi X174$ yields 11

Supplied in: 10 mM Tris-HCl (pH 8.0) and 1 mM EDTA.

$Reagents\ supplied:$

6X Gel Loading Dye, Blue