Terminal Transferase

M0315S

R? 37° We

100

BioLabs

1-800-632-7799

info@neb.com

www.neb.com

20.000 U/ml Lot: 0101204 500 units RECOMBINANT Store at -20°C Exp: 4/14

Description: Terminal Transferase (TdT) is a template independent polymerase that catalyzes the addition of deoxynucleotides to the 3' hydroxyl terminus of DNA molecules. Protruding, recessed or blunt-ended double or single-stranded DNA molecules serve as a substrate for TdT. The 58.3 KDa enzyme does not have 5' or 3' exonuclease activity. The addition of Co²⁺ in the reaction makes tailing more efficient.

New Reaction Buffer

M0315S RX 37° 🐝

500 units	20,000 U/ml	Lot: 0101204
RECOMBINANT	Store at -20°C	Exp: 4/14

Description: Terminal Transferase (TdT) is a template independent polymerase that catalyzes the addition of deoxynucleotides to the 3' hydroxyl terminus of DNA molecules. Protruding, recessed or blunt-ended double or single-stranded DNA molecules serve as a substrate for TdT. The 58.3 KDa enzyme does not have 5' or 3' exonuclease activity. The addition of Co²⁺ in the reaction makes tailing more efficient.

New Reaction Buffer

Source: An E. coli strain that carries the cloned Terminal Transferase gene from calf thymus.

Applications:

- Addition of homopolymer tails to the 3' ends of DNA
- Labeling the 3' ends of DNA with modified nucleotides (e.g., ddNTP, DIG-dUTP)
- TUNEL asay (in situ localization of apoptosis)
- TdT dependent PCR

Supplied in: 50 mM KP0, (pH 7.3 @ 25°C), 100 mM NaCl, 1.43 mM 2-mercaptoethanol, 0.1% Triton X-100 and 50% glycerol.

Reagents Supplied with Enzyme: 10X Terminal Transferase Reaction Buffer, 10X (2.5 mM) solution of CoCl_a.

Reaction Conditions: 1X Terminal Transferase Reaction Buffer, supplemented with 0.25 mM CoCl_a. Incubate at 37°C.

1X Terminal Transferase Reaction Buffer: 50 mM potassium acetate 20 mM Tris-acetate 10 mM magnesium acetate pH 7.9 @ 25°C

Source: An E. coli strain that carries the cloned Terminal Transferase gene from calf thymus.

Applications:

- Addition of homopolymer tails to the 3' ends of DNA
- Labeling the 3' ends of DNA with modified nucleotides (e.g., ddNTP, DIG-dUTP)
- TUNEL asay (in situ localization of apoptosis)
- TdT dependent PCR

Supplied in: 50 mM KP0, (pH 7.3 @ 25°C), 100 mM NaCl, 1.43 mM 2-mercaptoethanol, 0.1% Triton X-100 and 50% glycerol.

Reagents Supplied with Enzyme: 10X Terminal Transferase Reaction Buffer, 10X (2.5 mM) solution of CoCl₂.

Reaction Conditions: 1X Terminal Transferase Reaction Buffer, supplemented with 0.25 mM CoCl_a. Incubate at 37°C.

1X Terminal Transferase Reaction Buffer:

50 mM potassium acetate 20 mM Tris-acetate 10 mM magnesium acetate pH 7.9 @ 25°C

Unit Definition: One unit is defined as the amount of enzyme catalyzing the incorporation of 1 nmol dATP into acid-insoluble material in a total reaction volume of 1 ml in 1 hour at 37°C using $d(A)_{10}$ as a primer.

Unit Assay Conditions: 1X Terminal Transferase Reaction Buffer, 0.72 μ M d(A)₁₈, 0.2 mM dATP and 1.0 µCi [³H]- dATP in a 50 µl total reaction volume.

Quality Control Assays

Exonuclease Activity: Incubation of 50 units of enzyme with 1 µg sonicated [3H] DNA $(2 \times 10^5 \text{ cpm/}\mu\text{g})$ for 4 hours at 37°C in 50 μI assav buffer released < 0.5% radioactivity.

Endonuclease Activity: Incubation of 50 units of enzyme with 1 µg ϕ X174 RF I DNA for 4 hours at 37°C in a 50 µl reaction buffer resulted in < 10% conversion to RF II.

Physical Purity: Purified to > 95% homogeneity as determined by SDS-PAGE analysis using Coomassie Blue detection.

Unit Definition: One unit is defined as the amount

of enzyme catalyzing the incorporation of 1 nmol

reaction volume of 1 ml in 1 hour at 37°C using

Unit Assay Conditions: 1X Terminal Transferase

Reaction Buffer, 0.72 μ M d(A)₁₈, 0.2 mM dATP and

1.0 µCi [³H]- dATP in a 50 µl total reaction volume.

Exonuclease Activity: Incubation of 50 units

of enzyme with 1 µg sonicated [3H] DNA (2 x 10⁵ cpm/µg) for 4 hours at 37°C in 50 µl

assav buffer released < 0.5% radioactivity.

Endonuclease Activity: Incubation of 50 units of

enzyme with 1 μ g ϕ X174 RF I DNA for 4 hours

Physical Purity: Purified to > 95% homogene-

ity as determined by SDS-PAGE analysis using

Heat Inactivation: 75°C for 20 minutes.

at 37°C in a 50 µl reaction buffer resulted in

dATP into acid-insoluble material in a total

 $d(A)_{10}$ as a primer.

Quality Control Assays

< 10% conversion to RF II.

Coomassie Blue detection.

Heat Inactivation: 75°C for 20 minutes.

A Typical DNA Tailing Reaction:

- 1. Mix:
 - a. 5.0 ul 10X TdT Buffer
 - b. 5.0 µl 2.5 mM CoCl₂ solution provided
 - c. 5.0 pmols DNA (330 ng for 100 bp. 1 µg for 300 bp, 10 pmols DNA ends)*
 - d. 0.5 µl 10 mM dNTP (alpha-32P dATP may also be used)
 - e. 0.5 µl Terminal Transferase (20 units/µl) deionized H_aO to a final volume of 50 µl.
- 2. Incubate at 37°C for 30 minutes.
- 3. Stop the reaction by heating to 70°C for 10 minutes or by adding 10 ul of 0.2 M EDTA (pH 8.0).

*To determine approximate amount of DNA (ng/ pmol), multiply the number of base pairs by 0.66. Example: $300 \text{ bp } \times 0.66 = 198 \text{ ng/pmol}$. For 5.0 pmols multiply by 5, resulting in 990 ng/5 pmol.

The table on the reverse side can be used as a guide (values are approximate and are given for a 30 minutes incubation at 37°C in the recommended buffer).

(see other side)

CERTIFICATE OF ANALYSIS

A Typical DNA Tailing Reaction:

1. Mix:

- a. 5.0 µl 10X TdT Buffer
- b. 5.0 µl 2.5 mM CoCl₂ solution provided
- c. 5.0 pmols DNA (330 ng for 100 bp. 1 ug for 300 bp, 10 pmols DNA ends)*
- d. 0.5 µl 10 mM dNTP (alpha-32P dATP may also be used)
- e. 0.5 µl Terminal Transferase (20 units/µl) deionized $H_{2}0$ to a final volume of 50 μ l.
- 2. Incubate at 37°C for 30 minutes.
- 3. Stop the reaction by heating to 70°C for 10 minutes or by adding 10 µl of 0.2 M EDTA (pH 8.0).

*To determine approximate amount of DNA (ng/ pmol), multiply the number of base pairs by 0.66. Example: $300 \text{ bp } \times 0.66 = 198 \text{ ng/pmol}$. For 5.0 pmols multiply by 5, resulting in 990 ng/5 pmol.

The table on the reverse side can be used as a guide (values are approximate and are given for a 30 minutes incubation at 37°C in the recommended buffer).

(see other side)

Sec. BioLabs

www.neb.com

The rate of addition of dNTP's and thus the length of the tail is a function of the ratio of 3' DNA ends: dNTP concentration, and also which dNTP is used.

DNA Tailing Guide:

pmols 3´ ends	Tail Length			
pmol dNTP	dA	dC	dG	dT
1:100	1–5	1–3	1–3	1–5
1:1,000	10–20	10–20	5–10	10–20
1:5,000	100–300	50–200	10–25	200–300

References:

- 1. Chang, L.M. and Bollum, F.J. (1986) *CRC Crit. Rev. Biochem.* 21, 27–52.
- 2. Roychoudhury, R., Jay, E. and Wu R. (1976) *Nucl. Acids Res.* 3, 101–116.
- 3. Tu, C.-P.D. and Cohen, S.N. (1980) *Gene* 10, 177–183.
- 4. Boule, J.B., Rougeon, F. and Papanicolaou C. (2001) *J. Biol. Chem.* 276, 31388–31393.

Page 2 (M0315)

The rate of addition of dNTP's and thus the length of the tail is a function of the ratio of 3´ DNA ends: dNTP concentration, and also which dNTP is used.

DNA Tailing Guide:

pmols 3´ ends pmol dNTP	Tail Length			
	dA	dC	dG	dT
1:100	1–5	1–3	1–3	1–5
1:1,000	10–20	10–20	5–10	10–20
1:5,000	100–300	50–200	10–25	200–300

References:

- 1. Chang, L.M. and Bollum, F.J. (1986) *CRC Crit. Rev. Biochem.* 21, 27–52.
- 2. Roychoudhury, R., Jay, E. and Wu R. (1976) *Nucl. Acids Res.* 3, 101–116.
- 3. Tu, C.-P.D. and Cohen, S.N. (1980) *Gene* 10, 177–183.
- 4. Boule, J.B., Rougeon, F. and Papanicolaou C. (2001) *J. Biol. Chem.* 276, 31388–31393.