Lipophilic Tracers—Dil, DiO, DiD, DiA, and DiR

Table 1. Contents and storage information.

Material	Storage*	Stability	
DiO (D275, D1125, D7778, N22881)			
DiA (D3883, D291)			
Dil (D282, D383, D384, , D3911, D7776, D7777, D12730, N22880)	 ≤25°C Protect from light 	When stored as directed these products are stable for at least 1 year	
DiD (D307, D337, D7757)	5		
DiR (D12731)			
DiO (D3898); DiA (D7758); Dil (D3886, D3899, D7756)	 ≤-20°C Protect from light 		
Lipophilic Tracer Sampler Kit	• ≤25°C		
NeuroTrace® Multicolor Tissue-Labeling Kit *DiO, Dil, DiD pastes	Protect from light		

*Carbocyanine and aminostyryl dyes with saturated alkyl substituents (C_{18} , C_{16} , or C_{12}) may be stored at room temperature, protected from light. DilC₁₂(3) (D383) is intrinsically a sticky gum at room temperature. The perchlorate salt of DiD (D307) is intrinsically an oil at room temperature; the 4-chlorobenzenesulfonate salt (D7757) is a solid. Dil and DiO are also available mixed into ready-to-use tissue labeling pastes (N22880, N22881). These paste preparations may be stored at room temperature, protected from light. Dig. With unsaturated alkyl substituents ($\Delta^{9,12}$ - C_{18} or Δ^9 - C_{18}) should be stored frozen at \leq -20°C, protected from light under an argon or nitrogen atmosphere. These products are packaged under argon. *FAST* DilTM (D3899) is intrinsically an oil at room temperature. *FAST* DilTM and *FAST* DilTM are also available as solid 4-chlorobenzenesulfonate salts (D7756).

Approximate fluorescence excitation/emission maxima: See Table 2.

Introduction

Long-chain dialkylcarbocyanines, in particular DiI, and dialkylaminostyryl dyes (DiA and its analogs) are widely used as anterograde and retrograde neuronal tracers in living^{1,2} and fixed^{3,4} tissues and cells. DiI labeling does not appreciably affect cell viability, development, or basic physiological properties.^{1,2} DiI-labeled motoneurons reportedly have remained viable for up to four weeks in culture and up to one year *in vivo*.⁵ The dyes uniformly label neurons via lateral diffusion in the plasma membrane at a rate of about 0.2–0.6 mm per day in fixed specimens;^{4,6} in living tissue labeling is more rapid (6 mm per day), due to active dye transport processes.^{1,4} In aldehyde-fixed tissue, diffusion of DiI can be followed for up to two years in some cases.^{7,8} In general, the dyes do not transfer from labeled to unlabeled cells, although some transfer may occur when the membrane is disrupted, as occurs when sectioning.^{1,9}

Invitrogen offers a range of dialkylcarbocyanines with a variety of spectroscopic and cellular labeling properties:

 DiI (D282, D3911, N22880) and DiO (D275) have fluorescence excitation and emission maxima separated by about 65 nm, facilitating two-color labeling (Figure 1).^{1,4,10} DiO staining is usually less intense than that of DiI, and occasionally fails completely in fixed tissues. 6,11

- DiD (D307, D7757) is an analog of DiI with markedly red-shifted fluorescence excitation and emission spectra (Figure 1). This characteristic is useful in avoiding autofluorescence and phototoxic effects,¹² as well as for two-color labeling.^{13,14} DiR (D12731) has excitation and emission maxima in the near infrared region, where many tissues are optically transparent.
- DiIC₁₂(3) (D383), DiIC₁₆(3) (D384), and DiOC₁₆(3) (D1125) have shorter alkyl substituents (C₁₂ or C₁₆) than DiI and DiO (C₁₈). These slightly less lipophilic probes have been found by some to incorporate into membranes more easily than the DiI and DiO.¹⁵
- *FAST* DiITM (D3899, D7756) and *FAST* DiOTM (D3898) have diunsaturated $\Delta^{9,12}$ -C₁₈ alkyl substituents in place of the saturated C₁₈ tails of DiI and DiO, resulting in accelerated diffusion within membranes.¹⁶ A monounsaturated Δ^9 -C₁₈ analog of DiI is aso available (Δ^9 -DiI; D3886).
- Sulfonated derivatives of DiI and DiO, and CM-DiI (a thiol-reactive DiI derivative) produce staining that persists after fixation and permeabilization treatments. These tracers are described in instruction manual MP 06999.

In addition to neuronal tracing, lipophilic carbocyanines have many other applications including:

- Detection of cell-cell fusion¹⁷⁻¹⁹ and adhesion²⁰
- Tracing cell migration during development and after transplantation²¹⁻²³
- Lipid diffusion in membranes by FRAP (Fluorescence Recovery After Photobleaching)^{24,25}
- Cytotoxicity assays ^{26,27}
- Labeling of lipoproteins^{28,29}

The lipophilic aminostyryl dyes DiA (D3883), and 4-Di-10-ASP (D291) are also often used for neuronal tracing.^{30,31} DiA has been used as a second-color neuronal tracer in conjunction with DiI.^{6,32,33} Fixed tissue has been successfully labeled with DiA in some cases where DiO staining failed.⁶ *FAST* DiA[™] (D7758), a diunsaturated $\Delta^{9,12}$ -C₁₈ DiA analog designed for accelerated diffusion within membranes is also available from Invitrogen.

Spectral Characteristics

The spectral properties of the dialkylcarbocyanines are largely independent of the lengths of the alkyl chains, but are instead determined by the heteroatoms in the terminal ring systems and the length of the connecting bridge. They have extremely high extinction coefficients, moderate fluorescence quantum yields, and short excited state lifetimes in lipid environments $(\sim 1 \text{ ns})$.³⁴ They are insoluble in water, but their fluorescence is readily detected when incorporated into membranes. A summary of spectral properties is shown in Table 2, together with appropriate filter sets for fluorescence microscopy applications.

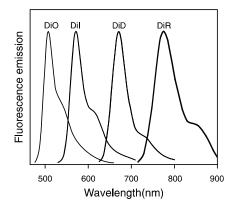


Figure 1. Normalized fluorescence emission spectra of DiO, DiI, DiD, and DiR bound to phospholipid bilayer membranes.

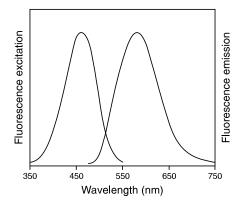


Figure 2. Fluorescence excitation and emission spectra of DiA bound to phospholipid bilayer membranes.

Aminostyryl dyes are insoluble in aqueous environments but their fluorescence is easily detected upon insertion into membranes or when diluted into organic solvents. DiA's excitation and emission maxima measured in DOPC phospholipid bilayers are about 460 nm and 580 nm, respectively (Figure 2). As is typical for aminostyryl dyes, there is a significant wavelength shift relative to spectra measured in solvents such as methanol (Table 2). The emission spectrum of DiA is very broad, allowing it to be detected as green, orange, or even red fluorescence depending on the optical filter used.

Experimental Applications

Preparing Stock Solutions	Prepare stock solutions of lipophilic tracers in dimethylformamide (DMF), dimethylsulfoxide (DMSO), or ethanol at 1 to 2.5 mg/mL. DMF is preferable to ethanol as a solvent for DiO. Stock solutions can be stored for at least six months without deterioration under the same conditions as the undissolved product.
	Dissolving DiO in DMF may require sonication and heating to 50°C, and the dye may precipitate from this solution after several hours. To obtain a stable concentrated solution of DiO, perform the following procedure. ³⁵
1.1	Dissolve solid DiO in chloroform to prepare a 50 mg/mL DiO/chloroform stock solution. Mix one volume of the DiO/chloroform stock solution with an equal volume of octadecylamine. Ratios of DiO/chloroform stock solution and octadecylamine of up to 1:10 have also worked.
1.2	Heat the solution to 50°C, then allow it to precipitate by placing it on ice with two volumes of methanol.
1.3	Pellet the precipitate by centrifugation for 5 minutes at 13,000 rpm in a microcentrifuge. Carefully remove the supernatant and discard it.
1.4	Dry the pellet using a vacuum microcentrifuge or by allowing the solvent to evaporate over- night through a fine hole poked in the lid of the tube's cap.
1.5	Dissolve the resulting powder in DMF at 5% (w/v) with sonication, heating to 50°C. Clear the solution by centrifuging for 10 minutes at 13,000 rpm in a microcentrifuge.
Staining Methods	Methods for cellular labeling with dialkylcarbocyanine and dialkylaminostyryl tracers based on published procedures and recommendations from our customers are summarized below.

Direct application of dye crystals. Dye crystals can be applied directly to intact or cut neurons for retrograde or anterograde labeling.^{4,6,31,36} We offer specially prepared large crystals of DiI (D3911) for this purpose. FAST Dil[™] (D7756) is a crystal but has the appearance of tar. In some cases, direct application of crystals produces more consistent labeling than injection of a dye solution.³⁶ Crystals are typically applied to a micropipette tip for delivery to the desired labeling site. Water-setting glue ⁵ or pieces of gelatin sponge (Gelfoam, Pfizer, Kalamazoo, MI) ³¹ may be used to hold the crystals in place during the time required for transport of the dye along the neuronal pathway. For labeling relatively large areas, a piece of nylon filter or Gelfoam may be soaked with concentrated dye solution and inserted into a natural or dissected cavity.³

NeuroTrace^{*} **tissue labeling pastes.** NeuroTrace^{*} tissue labeling pastes consist of DiI, DiO, or DiD mixed into an inert, water-resistant gel. The pastes are ready to use as supplied and can be applied directly to live or fixed tissue specimens using the tip of a needle. This method of application improves the penetration of the dye into bundled neurons, labeling axons both on and below the surface. In similar situations, direct application of dye crystals or microinjection of concentrated solutions will only label neurons on the surface. This labeling method has also been found to increase the rate of dye transport by 50–80%.³⁷

Loading of tracers supplied as oils. *FAST* DiI^{∞} (D3899), Δ^9 -DiI (D3886), and DiD (D307) are packaged as a sticky oil. The sticky oil residue may be warmed slightly and applied directly to tissue samples with forceps. The tissue should then be warmed to ~40°C to facilitate transport of the dye. *FAST* DiI^{∞}, *FAST* DiA^{∞}, and DiD are also available in solid form (D7756, D7758, D7757) for direct application to cells or tissue.

Loading by injection. Pressure microinjection of a small bolus of concentrated dye solution is an alternative to direct application of crystalline dye for retrograde and anterograde neuronal tracing.^{1,13} A 2.5 mg/mL (0.25% w/v) solution of dye in DMF is typically used. Sonication, centrifugation, or filtration (5 µm pore size) of the concentrated dye solution prior to injection is recommended to remove undissolved dye crystals that might clog the pipette tip. Iontophoretic injection of DiI (5 mg/mL in ethanol) produces precise labeling of small groups of 2–30 cells for lineage tracing studies.²¹

Staining fixed and mounted tissue. Specimens for labeling with dialkylcarbocyanine and dialkylaminostyryl tracers (usually by direct application of dye crystals) are typically fixed in 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4 at ambient temperature.³⁸ Other fixatives, particularly glutaraldehyde, tend to produce unacceptably high levels of background fluorescence.^{3,4} Storage during the time required for diffusive staining of neuronal pathways (typically several weeks) can be at 4°C or ambient temperature. Permeabilizing reagents, detergents, and high concentrations of organic solvents usually result in loss of staining.³ Tissues stained with DiI and other lipophilic carbocyanines can be sectioned by cryostat or vibratome methods.³⁸ It is often reported that cryostat sectioning severely degrades the resolution of DiI labeling, but a recent report describes the use of polyethylene glycol (PEG) for this purpose.³⁹ Avoid mounting media containing glycerol, which can extract membrane-bound dyes.

Labeling cell suspensions or adherent cells. Vybrant^{*} DiI, DiO, and DiD cell-labeling solutions can be added directly to normal culture media to uniformly label suspended or attached culture cells. Cell suspensions or adherent cells on coverslips are incubated with the loading solution for 5 minutes to 2 hours at 37°C. After loading, the cells are spun down, rinsed, and resuspended in fresh medium. For adherent cells, labeling in culture while attached results in improved viability compared to labeling after dissociation.¹⁰ Methods for labeling cultured cells using the Vybrant^{*} DiI, DiO, and DiD cell-labeling solutions are described in instruction manual MP 22885.

Labeling intracellular membranes. DiI and $DiIC_{16}(3)$ can be used to selectively label the endoplasmic reticulum (ER) in living sea urchin and ascidian eggs. A saturated solution of dye in soybean oil is pressure microinjected into the egg and diffusively labels the entire ER network within about 30 minutes.³⁹

Combination with Other Labeling Techniques

DiI labeling can be used in combination with immunofluorescent or immunoperoxidase labeling for detailed neuroanatomical studies.^{15,38,40-42} The primary limitation is that conventional permeabilization reagents such as Triton^{*} X-100 cannot be used to enhance antibody penetration.⁴¹ An optimized protocol developed by Lukas and co-workers³⁸ uses 0.3% Tween 20. DiI-sensitized photoconversion of diaminobenzidine (DAB) to an electron-dense precipitate allows long-term preservation of DiI labeling, as well as correlation of fluorescence imaging with transmitted light and electron microscopy.^{3,7} Staining may be enhanced by Giesma counterstaining.⁴³ Typically, tissue sections are pre-incubated in a 2 mg/mL solution of DAB in 0.1 M Tris buffer, pH 8.2 for approximately 60 minutes at 4°C in the dark. Sections are then irradiated for 1–2 hours using the same excitation filter used for fluorescence microscopy, changing the DAB solution every 10–20 minutes.^{3,43} Use of higher-magnification objectives (e.g., 20X) decreases the photoconverted area of the specimen but produces better image resolution and sensitivity and also reduces the irradiation time.⁴³

References

J Cell Biol 103, 171 (1986);
 Trends in Neurosci 12, 333 (1989);
 Methods Cell Biol 38, 325 (1993);
 Development 101, 697 (1987);
 J Comp Neurol 302, 729 (1990);
 Neuron 11, 801 (1993);
 J Histochem Cytochem 38, 725 (1990);
 Exp Neurol 102, 92 (1988);
 J Neurosci Methods 88, 27 (1999);
 Histochemistry 97, 329 (1992);
 J Neurosci Methods 36, 17 (1991);
 J. Histochem Cytochem 32, 608 (1984);
 J Neurosci 15, 549 (1995);
 J Cell Biol 126, 519 (1994);
 J Physiol 517, 533 (1999);
 J Neurosci Methods 103, 3 (2000);
 J Cell Biol 135, 63 (1996);
 Sephys J 71, 479 (1996);
 Cytometry 21, 160 (1995);
 J Cell Biol 133, 381 (1996);
 Methods Cell Biol 103, 1745 (1986);
 J Immunol Methods 166, 45 (1993);
 Cytometry 20, 290 (1995);
 J Cell Biol 103, 1745 (1986);
 J Immunol Methods 166, 45 (1993);
 Cytometry 20, 290 (1995);
 J Cell Biol 103, 1745 (1986);
 J Immunol Methods 166, 45 (1993);
 Cytometry 20, 290 (1995);
 J Cell Biol 90, 595 (1981);
 Brain Res 581, 339 (1992);
 J Neuroscience 15, 1057 (1995);
 J Neurosci 15, 990 (1995);
 J Neurosci 12, 3494 (1992);
 Biochemistry 24, 5176 (1985);
 Personal communication from F. Bonhoeffer and T. Trowe;
 J Comp Neurol 261, 155 (1987);
 Cell Biol 114, 929 (1991);
 J Histochem Cytochem 46, 901 (1998);
 J Cell Biol 114, 929 (1991);
 J Histochem Cytochem 38, 735 (1990);
 Neurosci Methods 42, 45 (1992);
 Neurosci Methods 46, 251 (1993);
 J Neurosci Methods 64, 47 (1996).

T		Ex* (nm) Em* (nm)	F * ()	Opti	cal Filters †
Tracer	Catalog Numbers		Omega	Chroma	
DiO	D275, D1125, D3898, D7778, N22881	484	501	XF100, XF23	41001, 31001
DiA	D3883, D291, D7758	456	590	XF21	31024
Dil	D282, D383, D384, D3886, D3899, D7756, D7776, D7777, D12730, D3911, N22880	549	565	XF108, XF32	41002, 31002
DiD	D307, D337, D7757	644	665	XF110, XF47	41008, 31023
DiR	D12731	750	780 ‡	XF112	41009

 Table 2. Spectral characteristics of lipophilic carbocyanine and aminostyryl tracers.

* Fluorescence excitation (Ex) and emission (Em) maxima for membrane-bound dye. † Catalog numbers for recommended bandpass filter sets for fluorescence microscopy. Omega filters are supplied by Omega Optical Inc. (www.omegafilters.com). Chroma filters are supplied by Chroma Technology Corp. (www.chroma.com).

+ Fluorescence emission of this dye is invisible to the human eye and must be detected using a CCD camera or other infrared-sensitive detector.

Product List Current prices may be obtained from our website or from our Customer Service Department.

D2914-(4-(didecylamino)styryl)-N-methylpyridinium iodide (4-Di-10-ASP)
D3831,1'-didodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DilC12(3))100 mgD3834-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (DiA; 4-Di-16-ASP)25 mgD11253,3'-dihexadecyloxacarbocyanine perchlorate (DiOC16(3))25 mg
D38834-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (DiA; 4-Di-16-ASP)
D1125 3,3'-dihexadecyloxacarbocyanine perchlorate (DiOC ₁₆ (3))
D7778 3,3'-dioctadecyl-5,5'- di(4-sulfophenyl)oxacarbocyanine, sodium salt (SP-DiOC ₁₈ (3))
D384 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DilC ₁₆ (3))
D7758 4-(4-(dilinoleylamino)styryl)-N-methylpyridinium 4-chlorobenzenesulfonate (FAST DiA [™] solid; DiA ^{9,12} -C ₁₈ ASP, CBS)
D3898 3,3'-dilinoleyloxacarbocyanine perchlorate (FAST DiO [™] solid; DiO∆ ^{9,12} -C ₁₈ (3), ClO₄)
D7756 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine, 4-chlorobenzenesulfonate (FAST Dil [™] solid; Dil∆ ^{9,12} -C ₁₈ (3), CBS)
D3899 1,1'-dilinoleyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (FAST Dil [™] oil; Dil∆ ^{9,12} -C ₁₈ (3), ClO ₄)
D275 3,3'-dioctadecyloxacarbocyanine perchlorate ('DiO'; DiOC ₁₈ (3)) 100 mg
D7776 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-5,5'-disulfonic acid (DilC ₁₈ (3)-DS)
D7777 1,1'-dioctadecyl-6,6'- di(4-sulfophenyl)-3,3,3',3'-tetramethylindocarbocyanine (SP-DilC ₁₈ (3))
D12730 1,1'-dioctadecyl-3,3, 3',3'-tetramethylindodicarbocyanine- 5,5'-disulfonic acid (DilC ₁₈ (5)-DS ()
D282 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate ('Dil'; DilC ₁₈ (3))
D3911 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate ('Dil'; DilC ₁₈ (3)) *crystalline*
D7757 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt ('DiD' solid; DilC ₁₈ (5) solid)
D307 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate ('DiD' oil; DilC ₁₈ (5) oil)
D337 4,4'-diisothiocyanatostilbene- 2,2'-disulfonic acid, disodium salt (DIDS)
D12731 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide ('DiR'; DilC ₁₈ (7))
D3886 1,1'-dioleyl-3,3,3',3'-tetramethylindocarbocyanine methanesulfonate (Δ^9 -Dil)
L7781 Lipophilic Tracer Sampler Kit 1 ki
N22880 NeuroTrace [®] Dil tissue-labeling paste
N22881 NeuroTrace [®] DiO tissue-labeling paste
N22884 NeuroTrace [®] Multicolor Tissue-Labeling Kit *DiO, Dil, DiD pastes, 500 mg each*

Contact Information

Molecular Probes, Inc.

29851 Willow Creek Road Eugene, OR 97402 Phone: (541) 465-8300 Fax: (541) 335-0504

Customer Service:

6:00 am to 4:30 pm (Pacific Time) Phone: (541) 335-0338 Fax: (541) 335-0305 probesorder@invitrogen.com

Toll-Free Ordering for USA: Order Phone: (800) 438-2209

Order Fax: (800) 438-0228

Technical Service:

8:00 am to 4:00 pm (Pacific Time) Phone: (541) 335-0353 Toll-Free (800) 438-2209 Fax: (541) 335-0238 probestech@invitrogen.com

Invitrogen European Headquarters

Invitrogen, Ltd. 3 Fountain Drive Inchinnan Business Park Paisley PA4 9RF, UK Phone: +44 (0) 141 814 6100 Fax: +44 (0) 141 814 6260 Email: euroinfo@invitrogen.com Technical Services: eurotech@invitrogen.com

For country-specific contact information, visit www.invitrogen.com.

Further information on Molecular Probes products, including product bibliographies, is available from your local distributor or directly from Molecular Probes. Customers in Europe, Africa and the Middle East should contact our office in Paisley, United Kingdom. All others should contact our Technical Service Department in Eugene, Oregon.

Molecular Probes products are high-quality reagents and materials intended for research purposes only. These products must be used by, or directly under the supervision of, a technically qualified individual experienced in handling potentially hazardous chemicals. Please read the Material Safety Data Sheet provided for each product; other regulatory considerations may apply.

Limited Use Label License No. 223: Labeling and Detection Technology

The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) to not transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. Invitrogen Corporation will not assert a claim against the buyer of infringement of the above patents based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. If the purchaser is not willing to accept the limitations of this limited use statement, Invitrogen is willing to accept return of the product with a full refund. For information on purchasing a license to this product for purposes other than research, contact Molecular Probes, Inc., Business Development, 29851 Willow Creek Road, Eugene, OR 97402, Tel: (541) 465-8300. Fax: (541) 335-0354.

Several Molecular Probes products and product applications are covered by U.S. and foreign patents and patents pending. All names containing the designation * are registered with the U.S. Patent and Trademark Office.

Copyright 2008, Molecular Probes, Inc. All rights reserved. This information is subject to change without notice.